Deep Learning Part 1

Introduction

Artificial Neural Networks - Timeline

The perceptron :
A probalistic model for Perceptions
A Logical Calculus of Ideas inform_atio_n storage an_d An Introduction to
Immanent in Nervous Activity organization in the brain Computational Geometry

perceptrons limits of specific

McCulloch—Pitts neuron perceptrons

rp =+1

: nu \"\‘ 1
A gy
A 1L NG

Warren McCulloch 2\h Marvin Minsky and
and Walter Pitts Frank Seymour Papert
Rosenblatt

The representation of the
cumulative rounding error
of an algorithm as a Taylor
expansion of the local
rounding errors

Learning representations
by back-propagating errors

QAR Q QO O O O 0O 0

; ‘I' [V
David Rumelhart,

Seppo Linnainmaa Geoffrey Hinton,

Ronald Williams

https://en.wikipedia.org/wiki/McCulloch%E2%80%93Pitts_neuron

McCulloch-Pitts Neuron

Dendrites

N

The output of a neuron is all or
& nothing (O or 1)

Input synapses are exciting or
inhibiting

>
—_ X
o
S
\
[]

Synapse

If one inhibiting synapse is active the
output is O

Otherwise

— The output is 1 if more than a fixed
number of exciting synapses are active

S - And zero otherwise
e

Networks of McCulloch Pitts neurons
can calculate any logical functions

21 4 0 -y e{0,1}
N y

NbT(xl) L1 - \

1L —ye{o1}

. g Yy ¢ 3 \h----__ __-----./
\k______ ______7_/-”/ ,l, 2 B

AND function

9 2

¢ X PR /‘> |

Tt T =) 3 >2 Bdam—) 52l
=1 le

OR function

Artifical Neural Networks (ANNS)

Feed-Forward Neural Network Recurrent Neural Network
FNN
S () S
3 H B
-— e -—
a o a
£ - £
| Input | Hidden | Output | | Input | Hidden | Output |
Layer Layer Layer Layer Layer Layer

. Single neuron

Perceptrons (Rosenblatt)

'_' ~,
@ ~_| |
lllllll S - 7 .Z ! fl. | Ourpur Association Units

L S, S Kandion Sensory Units . O

* Aneuron calculates a weighted (> | O _ SRosponse Units
sum S of the input s () <)

* The output of a neuronis 1if S O — ()
Is above a threshold valueand = : () N o A |
-1 otherwise. O

* |t learns through reinforcement,
by changing the weights of the
connections and the threshold
values

Bias instead of Threshold value

_L Weights
W, Constant @\
__11'\' I]
Inputs - - Z f -
. MYy, | | Output
- -1 _'_I""

W SuUm Activation

© W Function
22

Weighted
Sum

w
Step Function
w

WO
W \
n—-1
n

— QD/,
&

0
0

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25

Single-layer / multi-layer

Training

* N times repeat (N number of
epochs) :

— For all pairs of input-ground-truth
data:

* Forward pass
- Calculate output
- Calculate the difference between the
output and gt for each output neuron
* Adjust weights

- Add the
difference * the input * the learning rate
to each weight

Output neurons

weights
(a)

Restrictions of perceptrons

* Single layer perceptron does

only linear classification

* Can't calculate the logical xor

function

- o

*eXclusive OR

2 input XOR gate

A

0
0
1
1

= O = D

A®B

0 = = O

1

OR

0,1

The XOR problem

1,1
@

XOR

1,0

Training of multilayer perceptrons

* Multi-layer perceptron can
calculate any logical function

e But how to train it?

e The output of a response neuron
depends on all the inner neurons

e Solution:

- Use gradient descent on the error-
function and calculate the
gradients via backpropagation

Chain rule

* We need to calculate the gradiant

ground truth

b2=0.35

of the error function for each weighto.; (‘i1 | 0.05
- The derivative of a function, which

IS a composition of functions

h(x) = f(g(x)) =) e

'S OE OF 0d}

F(a(x)) * g'(x) Owk. dak Gwk,

Backpropagation

The loss is a function of the
parameters of the network (w; b)) ¢.1

The loss is the average of the
loss for all pairs of input and
ground truth

The loss for one input/GT pairis 05 (

the accumulation of the losses of
all output-neurons

The loss of one output neuron is a
function of the difference between
the output and the ground truth

E =%ZZ (Ve — j,c)z
.

(il)

ground truth

b1=0.25 b2 =0.35

™,

0.05

0.95

gradiant at the output neuron

dE/dy;=y;—d;

Calculate gradiants for all weights and

biases from output to previous layer

using the chain chainrule 5p 95 84k
J

a0k Ak Aok
Qw;; 0aj dw;

Optimizers

‘ . e Stochatical gradient descent
* Backpropagation (SGD)
Calcula’[es the w = w - learning_rate * g
gradients of the error « SGD with momentum

— Calculate a running exponential

function average of gradients from
L _ previous steps
° Opt|m|zer d@CldeS * More weight given to closer values
how to update the - Parameter gamma controls the
impact of the momentum (often 0.9)

weights

SGD with and without momentum

Adaptive Moment Estimation (Adam)

* Use first order and second e« Meta-parameters
order momentum, i.e.

average and variation of ~ Learning rate

previous gradients - Beta;: decay rate for
» Adapt the learning rate for the average (0.9)

each parameter based on - Beta,: decay rate for

the previous gradients the variance (0.999)

and squared gradients

A OVERFITTING A OPTIMUM) UNDERFITTING

®
L] []
L] ®
Xz X @ ¥ | ———y——
error| o
error
a w]
error ®
X1 = X: = X

 Calculation of gradients and update of ¢ Mini batches

weights in each epoch, can be done - Less memory needed
using: - Adds noise which can help to
- online learning * Generalize
- For each input, ground truth pair * Not get stuck in local minima
— Mini batches - Use smaller learning rate with larger
batch-size

* For a given number of input, ground truth _ _
— For historical reasons the batch

pairs
size is often a power of 2 : 32, 64,
* For all input, ground truth pairs in the trainin .
set P9 P Y« The order of the iInput, ground
* Full batch is gradient descent instead of truth pairs is often randomized for

stochastic gradient descent each epoch

Activation Functions

Threshold (step function) of perceptron ¢ With linear functions we can only get
not good for gradient descent linear results, independent of the

. . number of layers
The derivative is undefined at 0 and O

anywhere else

e \We need activation functions that are
— Continuously differentiable

— Nonlinear

Activation Functions

e Saturating * Non-saturating
— vanishing gradient problem - Exploding gradients
* Batch Normalization
Sigmoid
Rectified Linear Unit (ReLU)
TR / dead neurons
tanh

/ Gaussian Error Linear Unit (GELU) Sigmoid Linear Unit (SiLU)

Loss Functions and Activation Functions
for output layers

* Regression * Binary classification | ——
~ Linear or ReLU - Sigmoid —t—

- Binary cross entropy

Range: 0to 1

Binary cross entropy = —(ylog(®) + (1 — y)log(1 — %))
Where § is the predicted value and y is the true value

Loss Functions and Activation Functions
for output layers

e Categorial classification

— Each input belongs to exactly one
class

0.01 e 0
compare

0.8

1.2

3.1

—+ softmax —=

0.08

0.12

0.80

Cross entropy = — %' y;log(9;)
Where ¥ is the predicted value, y is the true value and M is the number of classes

: . _ _exp(z;)
softmaxi(s) = s————
L exp(z;)

Range: Oto 1

Divides output so that the total
sum of the output is equal to 1

Loss Functions and Activation Functions
for output layers

e Categorial classification
. . 1
- Each input can belong to multiple sigmoid(z) = T———;

classes 1

Range: 0to 1

0.73 Al 1
compare

Sum of the binary cross entropies of the output neurons

Binary cross entropy = — Y1 (y; log($;) + (1 — y;)log(1 — #;))
Where # is the predicted value and y is the true value

Part 2 — Neural Networks for
bioimage analysis

Convolutional Neural Networks - Timeline

"Gradient-based learning applied to

: document recognition"” AlexNet does well in
Neural network_model for a mechanls_m_ of g ImageNet Large Scale Visual
pattern recognition unaffected by shift in

position — Neocognitron — - Recognition Challenge

AlexNet

Neocognitron

Lecun, Y.; Bottou, L.;

Fukushima, Kunihiko Bengio, Y.; Haffner, P. _
Alex Krizhevsky

U-Net: Convolutional Networks for

Biomedical
Image Segmentation

Unet

‘‘‘‘‘

Olaf Ronneberger,

Philipp Fischer, and
Thomas Brox

ANNSs In Image Analysis

Image classification

detection + tracking +
object classification

semantic segmentation
Instance segmentation
Image transformation

* Image classificaton

Classify the image as a whole
(cat, dog, ...)

Input: image

Output: Label / Probabillity for class

Tumor

Object Detection and classification

Detection and classification of blood cells

* Find bounding boxes of
objects and classify objects

* [nput: Image

* Output:
bounding boxes and labels

Segmentation

Semantic Segmentation Instance Segmentation

* |nput: image

* Output: mask or index mask or
probability maps for each class

Image transformation

Network input (10=/0.4NA) Metwork output (10=/0.4NA) Ground truth (20x/0.75NA) °® I n p ut . I m a g e

* Output : Image

— usually of the same
type as the input
Image

- the content Is
transformed, not
the image type

MLPs or Fully Connected Neural
Networks for image analysis

 Problems:

- Images can be big
« Alot of input neurons

* Alot of connections
- Alot of parameters

— The spatial relations of the pixels/voxels are lost

— The networks must spontaneously learn to
extract useful features at the right scales

e Solution :

— Convolutional Neural Networks

« Add convolutional layers and pooling layers before
the fully connected part

CNNSs

Convolution Neural Network (CNN)

— Pooling Pooling Pooling A

Convolution Convolution Convolution AFEtliw\é?cg?\n
+ + +
Kernel RelU RelU RelU
Fully
- Feature Maps > ~———Connected-———

Layer
| | | | -
Feature Extraction Classification Probabilistic

Distribution

Convolution layer

E; : g; Input image Convolution Feature map
Center element of the kemel is placed over the (0X0) Kemel

source pixel. The source pixel is then replaced

with a weighted sum of itself and nearby pixals. Eg:?; wll mm] =]
(0x1) o -
| 0x0) 1 8 -1
Source pixel (0% 1) L S, (R
+ (-4%2)
-8
_ : * Values at the borders are missing
s ! - Padding
] - Shrink result image

* Hyperparameters

- nr. of filters (feature maps, convolutions)

- kernel_size (nxm)

— Strides (pxq)
* The distance the kernel moves in each step

- Padding
- Dilation

Dilated convolution

Pooling Layers

Max Pool

B

Filter - (2 x 2)
Stride - (2, 2)

* Aypeirpadilelers
- Pool size (nxm)

- Stride
« Often equal to pool size

* Max pooling / Average pooling
- Reduce size
- Local shift invariance
— Keep most significant info

CNNs examples
. LeNet- 1989

Image: 28 (height) = 28 (width) x 1 (channel)

Convolution with 5x5 ke.r'nel+2padding:28 x28x6

. sigmoid

Pool with 2x2 average kernel+2 stride: 14 x14x6

Convolution with 5x5 kernel (no pad):10x10x18

, sigmoid

Pool with 2x2 average kernel+2 stride: 5x5x16

s flatten

Dense: 120 fully connected neurons

., sigmoid

Dense: 84 fully connected neurons

., sigmoid

Dense: 10 fully connected neurons

Output: 1 DiE 10 classes

Y/ 796
6757 ¢ 63
2 (790 /&
“Wyl 90| ¢
T 6l ¥4 4/
159265 %
A 22 AdLD4
0as 8073
Ol «lbq b o
7/ 28 1 k4

* Yann LeCun
* Recognition of handwritten digits

R Mo WD NS
NOS OO LV —

AlexNet

Image: 224 (height) x 224 (width) x 3 (channels)

v
Convolution with11x11kernel+4 stride:54 x54 x96

v Relu

Pool with 3x3 max. kernel+2 stride: 26x26x96
v

Convolution with 5x5 kernel+2 pad:26x26x256
v RelLu

Pool with 3x3 max.kernel+2stride: 12x12x256
v

Convolution with 3x3 kernel+1 pad:12x12x384
v Relu

Convolution with 3x3 kernel+1 pad:12x12x384
v Relu

Convolution with 3x3 kernel+1 pad:12x12x256
v Relu

Pool with 3x3 max.kernel+2stride:5x5x256

v flatten

Dense: 4096 fully connected neurons

v Relu, dropout p=0.5

Dense: 4096 fully connected neurons

v ReLu, dropout p=0.5

Dense: 1000 fully connected neurons

v

Output: 1 of 1000 classes

AlexNet 2012,
Ima eNet

Autoencoders

14x14x32

3x3x128 l!_” B,
“
s ||
u ')
Conv3 ' Reshape
Conv2 stride=2 h 11! DeConv3
stride=2 1 Lit stride=2
Flatten FC

Conv1
stride =2

e Unsupervised

Encoder creates a compressed version
h of the input

14x14x32

1152 1152
g 5
TuTubd 3 TxTx64
A a0 X - |

DeConv2
stride=2

stride=2

DeConv1

What is learned was
originally the compressed
version of the input h

However autoencoders are
also used for :

- Finding feature sets

- Principal component
analysis

- De-noising of images

Decoder reconstructs h to create the
output

Error is calculated between the input
and its reconstructed version

Encoder

Decoder

eeeeeeeeeeeeee

Unet

image Predicted Mask actual Mask

0

* Problems for semantic segmentation in CNNs

* Unet

input
image |w|a > >
tile :

100 200 0 100 200 0 100 200 >|>| I—I-

output
| segmentation
| map

} |
The scale information is lost, everything is H‘; - — !jljl o3, ey
based on the smallest feature maps - — ,..-.- :maxpoclfﬂ
up-cony 2x2

= conv 1x1

e Unet can directly be used for

Supervised semantic segmentation

* Unet s also the basis of instance
segmentation networks, like
 stardist

Fully convolutional neural network * cellpose

Autoencoder architecture with interconnections
between encoder and decoder layers

