
  

Deep Learning Part 1

Introduction



  

Artificial Neural Networks - Timeline

Warren McCulloch 
and Walter Pitts

A Logical Calculus of Ideas 
Immanent in Nervous Activity

1943

McCulloch–Pitts neuron
perceptrons

1958

The perceptron : 
A probalistic model for 

information storage and 
organization in the brain

1969

Perceptions
An Introduction to 

Computational Geometry

Marvin Minsky and 
Seymour Papert 

1970

Frank 
Rosenblatt

limits of specific 
perceptrons

The representation of the 
cumulative rounding error 
of an algorithm as a Taylor 

expansion of the local 
rounding errors

Seppo Linnainmaa
David Rumelhart, 
Geoffrey Hinton, 
Ronald Williams

Learning representations 
by back-propagating errors

1986

https://en.wikipedia.org/wiki/McCulloch%E2%80%93Pitts_neuron


  

McCulloch-Pitts Neuron
● The output of a neuron is all or 

nothing (0 or 1)
● Input synapses are exciting or 

inhibiting
● If one inhibiting synapse is active the 

output is 0
● Otherwise

– The output is 1 if more than a fixed 
number of exciting synapses are active

– And zero otherwise



  

NOT(x1)

Networks of McCulloch Pitts neurons
can calculate any logical functions



  

Artifical Neural Networks (ANNs)
Feed-Forward Neural Network Recurrent Neural Network



  

Perceptrons (Rosenblatt)

Sensory Units

Association Units

Response Units● A neuron calculates a weighted 
sum S of the input

● The output of a neuron is 1 if S 
is above a threshold value and 
-1 otherwise.

● It learns through reinforcement, 
by changing the weights of the 
connections and the threshold 
values



  

Bias instead of Threshold value



  

Single-layer / multi-layer



  

Training
● N times repeat (N number of 

epochs) :
– For all pairs of input-ground-truth 

data:
● Forward pass

– Calculate output
– Calculate the difference between the 

output and gt for each output neuron
● Adjust weights

– Add the 
difference * the input * the learning rate 
to each weight



  

Restrictions of perceptrons 
● Single layer perceptron does 

only linear classification
● Can’t calculate the logical xor 

function



  

Training of multilayer perceptrons
● Multi-layer perceptron can 

calculate any logical function
● But how to train it?
● The output of a response neuron 

depends on all the inner neurons
● Solution:

– Use gradient descent on the error-
function and calculate the 
gradients via backpropagation



  

Chain rule
● We need to calculate the gradiant 

of the error function for each weight
● The derivative of a function, which 

is a composition of functions

h(x) = f(g(x))

is 

f’(g(x)) * g’(x)



  

Backpropagation
● The loss is a function of the 

parameters of the network (wi, bi)
● The loss is the average of the 

loss for all pairs of input and 
ground truth

● The loss for one input/GT pair is 
the accumulation of the losses of 
all output-neurons

● The loss of one output neuron is a 
function of the difference between 
the output and the ground truth

● gradiant at the output neuron

● Calculate gradiants for all weights and 
biases from output to previous layer 
using the chain chain rule



  

Optimizers

● Backpropagation 
calculates the 
gradients of the error 
function

● Optimizer decides 
how to update the 
weights

● Stochatical gradient descent 
(SGD)
w = w - learning_rate * g

● SGD with momentum
– Calculate a running exponential 

average of gradients from 
previous steps

● More weight given to closer values
● Parameter gamma controls the 

impact of the momentum (often 0.9)



  

SGD with and without momentum



  

Adaptive Moment Estimation (Adam )
● Use first order and second 

order momentum, i.e. 
average and variation of 
previous gradients

● Adapt the learning rate for 
each parameter based on 
the previous gradients 
and squared gradients

● Meta-parameters
– Learning rate
– Beta₁: decay rate for 

the average  (0.9)
– Beta₂: decay rate for 

the variance (0.999)



  

Mini batches
● Calculation of gradients and update of 

weights in each epoch, can be done 
using:
– online learning

● For each input, ground truth pair
– Mini batches

● For a given number of input, ground truth 
pairs

– Full Batch 
● For all input, ground truth pairs in the training 

set
● Full batch is gradient descent instead of 

stochastic gradient descent

● Mini batches
– Less memory needed
– Adds noise which can help to

● Generalize
● Not get stuck in local minima

– Use smaller learning rate with larger 
batch-size

– For historical reasons the batch 
size is often a power of 2 : 32, 64, 
128, 256, …

● The order of the input, ground 
truth pairs is often randomized for 
each epoch



  

Activation Functions

● Threshold (step function) of perceptron 
not good for gradient descent

● The derivative is undefined at 0 and 0 
anywhere else

● With linear functions we can only get 
linear results, independent of the 
number of layers 

● We need activation functions that are
– Continuously differentiable
– Nonlinear



  

Activation Functions

● Saturating
– vanishing gradient problem

● Non-saturating 
– Exploding gradients

● Batch Normalization
Sigmoid

tanh

Rectified Linear Unit (ReLU)

dead neurons

Gaussian Error Linear Unit (GELU) Sigmoid Linear Unit (SiLU)



  

Loss Functions and Activation Functions 
for output layers

● Regression
– Linear or ReLU
– MSE

● Binary classification
– Sigmoid
– Binary cross entropy



  

● Categorial classification
– Each input belongs to exactly one 

class

Loss Functions and Activation Functions 
for output layers

Loss Functions and Activation Functions 
for output layers



  

● Categorial classification
– Each input can belong to multiple 

classes

Loss Functions and Activation Functions 
for output layers

Sum of the binary cross entropies of the output neurons



  

Part 2 – Neural Networks for 
bioimage analysis



  

Convolutional Neural Networks - Timeline

Olaf Ronneberger, 
Philipp Fischer, and 

Thomas Brox

U-Net: Convolutional Networks for 
Biomedical

Image Segmentation

2015
2012

AlexNet does well in 
 ImageNet Large Scale Visual 

Recognition Challenge

Alex Krizhevsky

AlexNet

Unet

1998

"Gradient-based learning applied to 
document recognition"

Lecun, Y.; Bottou, L.; 
Bengio, Y.; Haffner, P.

LeNet

Fukushima, Kunihiko 

Neural network model for a mechanism of 
pattern recognition unaffected by shift in 

position — Neocognitron —

1979

Neocognitron



  

ANNs in Image Analysis
● image classification
● detection + tracking + 

object classification
● semantic segmentation
● instance segmentation
● image transformation

● Image classificaton
– Classify the image as a whole 

(cat, dog, …)
– Input: image 

– Output: Label / Probability for class

Tumor

No Tumor



  

Object Detection and classification

● Find bounding boxes of 
objects and classify objects 

● Input: Image
● Output: 

bounding boxes and labels  

Detection and classification of blood cells



  

Segmentation

● Input: image
● Output: mask or index mask or 

probability maps for each class 



  

Image transformation
● Input: Image
● Output : Image 

– usually of the same 
type as the input 
image

– the content is 
transformed, not 
the image type



  

MLPs or Fully Connected Neural 
Networks for image analysis

● Problems:
– Images can be big

● A lot of input neurons
● A lot of connections 

– A lot of parameters

– The spatial relations of the pixels/voxels are lost
– The networks must spontaneously learn to 

extract useful features at the right scales
● Solution :

– Convolutional Neural Networks
● Add convolutional layers and pooling layers before 

the fully connected part



  

CNNs



  

Convolution layer

● Values at the borders are missing

– Padding

– Shrink result image

● Hyperparameters
– nr. of filters (feature maps, convolutions)
– kernel_size (nxm)
– Strides (pxq) 

● The distance the kernel moves in each step
– Padding 
– Dilation

Dilated convolution



  

Pooling Layers

● Max pooling  / Average pooling
– Reduce size
– Local shift invariance
– Keep most significant info

● Hyperparameters
– Pool size (nxm)
– Stride 

● Often equal to pool size



  

CNNs examples
LeNet - 1989

● Yann LeCun
● Recognition of handwritten digits



  

AlexNet 2012, 
ImageNet



  

Autoencoders

● Unsupervised
– Encoder creates a compressed version 

h of the input
– Decoder reconstructs h to create the 

output
– Error is calculated between the input 

and its reconstructed version

● What is learned was 
originally the compressed 
version of the input h

● However autoencoders are 
also used for :
– Finding feature sets
– Principal component 

analysis
– De-noising of images
– ...



  

Unet

● Problems for semantic segmentation in CNNs
– The scale information is lost, everything is 

based on the smallest feature maps

● Unet 
– Supervised
– Autoencoder architecture with interconnections

between encoder and decoder layers
– Fully convolutional neural network

● Unet can directly be used for 
semantic segmentation

●  Unet is also the basis of instance 
segmentation networks, like
● stardist
● cellpose
● ...


