

Deep Learning Part 1

Introduction

Artificial Neural Networks - Timeline

Warren McCulloch
and Walter Pitts

A Logical Calculus of Ideas
Immanent in Nervous Activity

1943

McCulloch–Pitts neuron
perceptrons

1958

The perceptron :
A probalistic model for

information storage and
organization in the brain

1969

Perceptions
An Introduction to

Computational Geometry

Marvin Minsky and
Seymour Papert

1970

Frank
Rosenblatt

limits of specific
perceptrons

The representation of the
cumulative rounding error
of an algorithm as a Taylor

expansion of the local
rounding errors

Seppo Linnainmaa
David Rumelhart,
Geoffrey Hinton,
Ronald Williams

Learning representations
by back-propagating errors

1986

https://en.wikipedia.org/wiki/McCulloch%E2%80%93Pitts_neuron

McCulloch-Pitts Neuron
● The output of a neuron is all or

nothing (0 or 1)
● Input synapses are exciting or

inhibiting
● If one inhibiting synapse is active the

output is 0
● Otherwise

– The output is 1 if more than a fixed
number of exciting synapses are active

– And zero otherwise

NOT(x1)

Networks of McCulloch Pitts neurons
can calculate any logical functions

Artifical Neural Networks (ANNs)
Feed-Forward Neural Network Recurrent Neural Network

Perceptrons (Rosenblatt)

Sensory Units

Association Units

Response Units● A neuron calculates a weighted
sum S of the input

● The output of a neuron is 1 if S
is above a threshold value and
-1 otherwise.

● It learns through reinforcement,
by changing the weights of the
connections and the threshold
values

Bias instead of Threshold value

Single-layer / multi-layer

Training
● N times repeat (N number of

epochs) :
– For all pairs of input-ground-truth

data:
● Forward pass

– Calculate output
– Calculate the difference between the

output and gt for each output neuron
● Adjust weights

– Add the
difference * the input * the learning rate
to each weight

Restrictions of perceptrons
● Single layer perceptron does

only linear classification
● Can’t calculate the logical xor

function

Training of multilayer perceptrons
● Multi-layer perceptron can

calculate any logical function
● But how to train it?
● The output of a response neuron

depends on all the inner neurons
● Solution:

– Use gradient descent on the error-
function and calculate the
gradients via backpropagation

Chain rule
● We need to calculate the gradiant

of the error function for each weight
● The derivative of a function, which

is a composition of functions

h(x) = f(g(x))

is

f’(g(x)) * g’(x)

Backpropagation
● The loss is a function of the

parameters of the network (wi, bi)
● The loss is the average of the

loss for all pairs of input and
ground truth

● The loss for one input/GT pair is
the accumulation of the losses of
all output-neurons

● The loss of one output neuron is a
function of the difference between
the output and the ground truth

● gradiant at the output neuron

● Calculate gradiants for all weights and
biases from output to previous layer
using the chain chain rule

Optimizers

● Backpropagation
calculates the
gradients of the error
function

● Optimizer decides
how to update the
weights

● Stochatical gradient descent
(SGD)
w = w - learning_rate * g

● SGD with momentum
– Calculate a running exponential

average of gradients from
previous steps

● More weight given to closer values
● Parameter gamma controls the

impact of the momentum (often 0.9)

SGD with and without momentum

Adaptive Moment Estimation (Adam)
● Use first order and second

order momentum, i.e.
average and variation of
previous gradients

● Adapt the learning rate for
each parameter based on
the previous gradients
and squared gradients

● Meta-parameters
– Learning rate
– Beta₁: decay rate for

the average (0.9)
– Beta₂: decay rate for

the variance (0.999)

Mini batches
● Calculation of gradients and update of

weights in each epoch, can be done
using:
– online learning

● For each input, ground truth pair
– Mini batches

● For a given number of input, ground truth
pairs

– Full Batch
● For all input, ground truth pairs in the training

set
● Full batch is gradient descent instead of

stochastic gradient descent

● Mini batches
– Less memory needed
– Adds noise which can help to

● Generalize
● Not get stuck in local minima

– Use smaller learning rate with larger
batch-size

– For historical reasons the batch
size is often a power of 2 : 32, 64,
128, 256, …

● The order of the input, ground
truth pairs is often randomized for
each epoch

Activation Functions

● Threshold (step function) of perceptron
not good for gradient descent

● The derivative is undefined at 0 and 0
anywhere else

● With linear functions we can only get
linear results, independent of the
number of layers

● We need activation functions that are
– Continuously differentiable
– Nonlinear

Activation Functions

● Saturating
– vanishing gradient problem

● Non-saturating
– Exploding gradients

● Batch Normalization
Sigmoid

tanh

Rectified Linear Unit (ReLU)

dead neurons

Gaussian Error Linear Unit (GELU) Sigmoid Linear Unit (SiLU)

Loss Functions and Activation Functions
for output layers

● Regression
– Linear or ReLU
– MSE

● Binary classification
– Sigmoid
– Binary cross entropy

● Categorial classification
– Each input belongs to exactly one

class

Loss Functions and Activation Functions
for output layers

Loss Functions and Activation Functions
for output layers

● Categorial classification
– Each input can belong to multiple

classes

Loss Functions and Activation Functions
for output layers

Sum of the binary cross entropies of the output neurons

Part 2 – Neural Networks for
bioimage analysis

Convolutional Neural Networks - Timeline

Olaf Ronneberger,
Philipp Fischer, and

Thomas Brox

U-Net: Convolutional Networks for
Biomedical

Image Segmentation

2015
2012

AlexNet does well in
 ImageNet Large Scale Visual

Recognition Challenge

Alex Krizhevsky

AlexNet

Unet

1998

"Gradient-based learning applied to
document recognition"

Lecun, Y.; Bottou, L.;
Bengio, Y.; Haffner, P.

LeNet

Fukushima, Kunihiko

Neural network model for a mechanism of
pattern recognition unaffected by shift in

position — Neocognitron —

1979

Neocognitron

ANNs in Image Analysis
● image classification
● detection + tracking +

object classification
● semantic segmentation
● instance segmentation
● image transformation

● Image classificaton
– Classify the image as a whole

(cat, dog, …)
– Input: image

– Output: Label / Probability for class

Tumor

No Tumor

Object Detection and classification

● Find bounding boxes of
objects and classify objects

● Input: Image
● Output:

bounding boxes and labels

Detection and classification of blood cells

Segmentation

● Input: image
● Output: mask or index mask or

probability maps for each class

Image transformation
● Input: Image
● Output : Image

– usually of the same
type as the input
image

– the content is
transformed, not
the image type

MLPs or Fully Connected Neural
Networks for image analysis

● Problems:
– Images can be big

● A lot of input neurons
● A lot of connections

– A lot of parameters

– The spatial relations of the pixels/voxels are lost
– The networks must spontaneously learn to

extract useful features at the right scales
● Solution :

– Convolutional Neural Networks
● Add convolutional layers and pooling layers before

the fully connected part

CNNs

Convolution layer

● Values at the borders are missing

– Padding

– Shrink result image

● Hyperparameters
– nr. of filters (feature maps, convolutions)
– kernel_size (nxm)
– Strides (pxq)

● The distance the kernel moves in each step
– Padding
– Dilation

Dilated convolution

Pooling Layers

● Max pooling / Average pooling
– Reduce size
– Local shift invariance
– Keep most significant info

● Hyperparameters
– Pool size (nxm)
– Stride

● Often equal to pool size

CNNs examples
LeNet - 1989

● Yann LeCun
● Recognition of handwritten digits

AlexNet 2012,
ImageNet

Autoencoders

● Unsupervised
– Encoder creates a compressed version

h of the input
– Decoder reconstructs h to create the

output
– Error is calculated between the input

and its reconstructed version

● What is learned was
originally the compressed
version of the input h

● However autoencoders are
also used for :
– Finding feature sets
– Principal component

analysis
– De-noising of images
– ...

Unet

● Problems for semantic segmentation in CNNs
– The scale information is lost, everything is

based on the smallest feature maps

● Unet
– Supervised
– Autoencoder architecture with interconnections

between encoder and decoder layers
– Fully convolutional neural network

● Unet can directly be used for
semantic segmentation

● Unet is also the basis of instance
segmentation networks, like
● stardist
● cellpose
● ...

