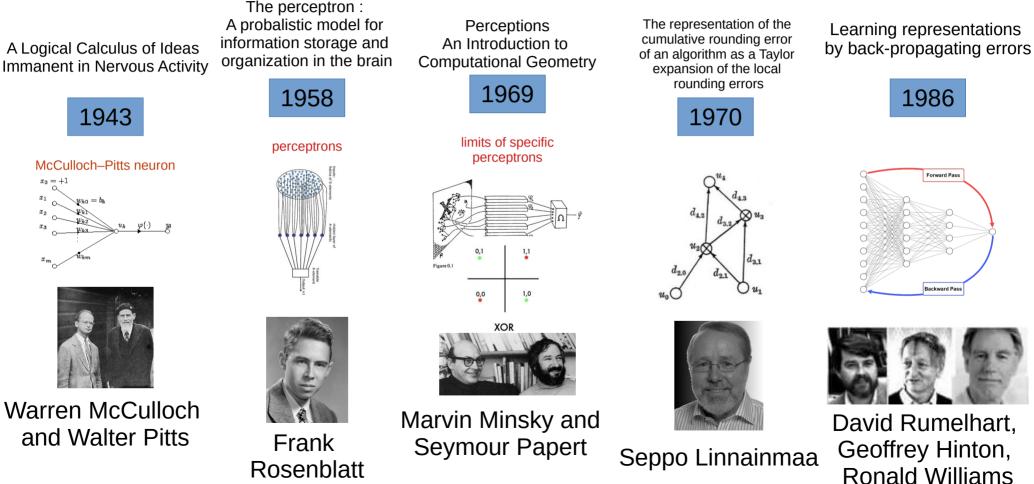
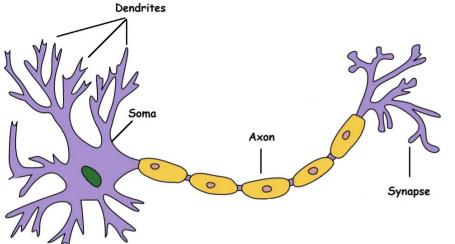
Deep Learning Part 1

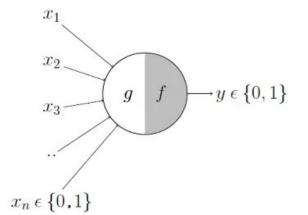
Introduction

Artificial Neural Networks - Timeline



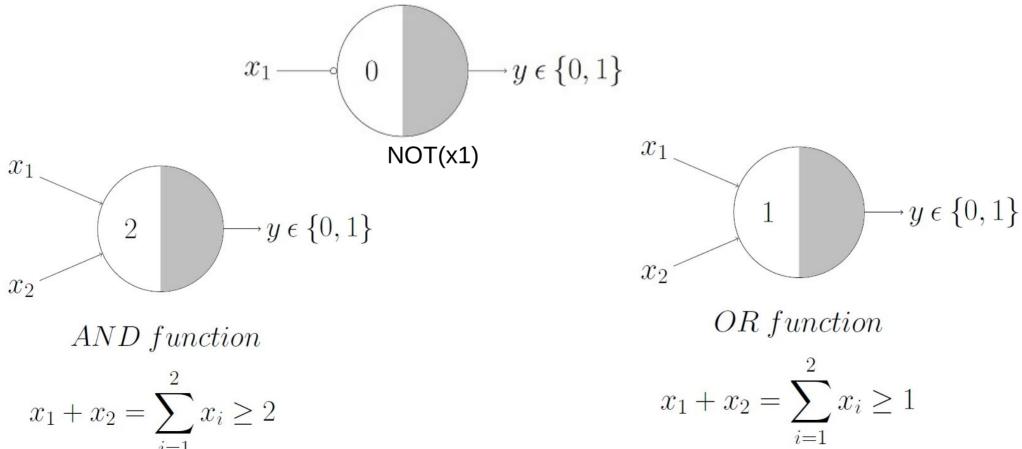
McCulloch-Pitts Neuron





- The output of a neuron is all or nothing (0 or 1)
- Input synapses are exciting or inhibiting
- If one inhibiting synapse is active the output is 0
- Otherwise
 - The output is 1 if more than a fixed number of exciting synapses are active
 - And zero otherwise

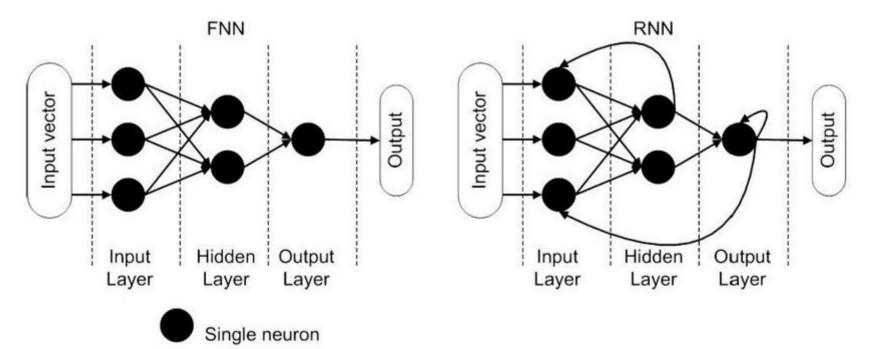
Networks of McCulloch Pitts neurons can calculate any logical functions



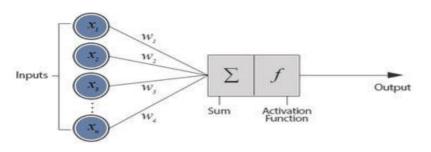
Artifical Neural Networks (ANNs)

Feed-Forward Neural Network

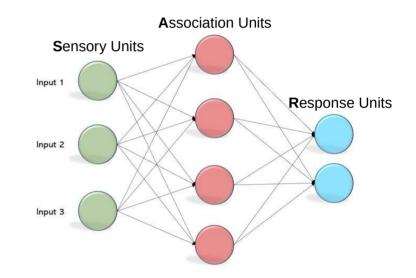
Recurrent Neural Network



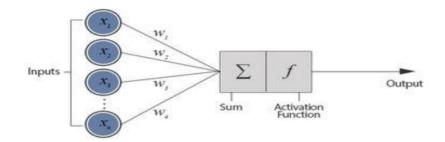
Perceptrons (Rosenblatt)

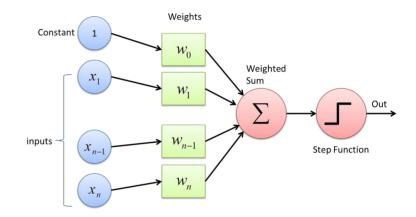


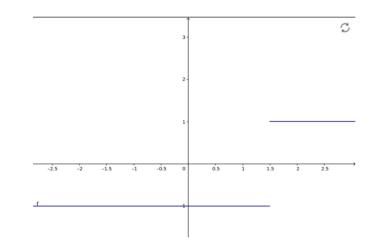
- A neuron calculates a weighted sum S of the input
- The output of a neuron is 1 if S is above a threshold value and -1 otherwise.
- It learns through reinforcement, by changing the weights of the connections and the threshold values

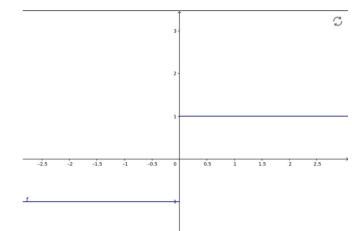


Bias instead of Threshold value

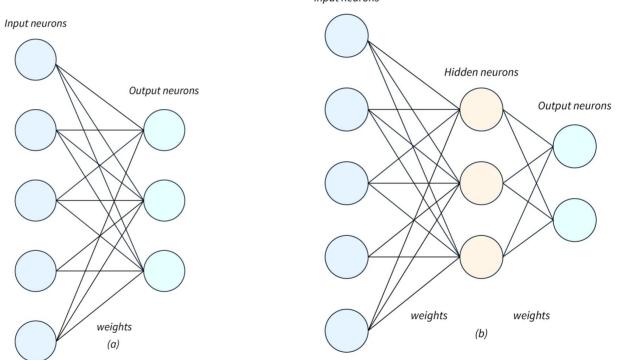








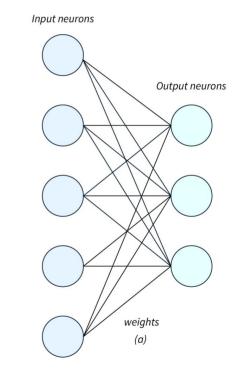
Single-layer / multi-layer



Input neurons

Training

- N times repeat (N number of epochs) :
 - For all pairs of input-ground-truth data:
 - Forward pass
 - Calculate output
 - Calculate the difference between the output and gt for each output neuron
 - Adjust weights
 - Add the difference * the input * the learning rate to each weight



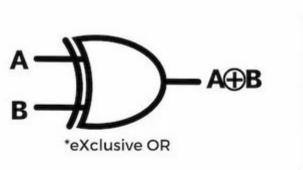
Restrictions of perceptrons

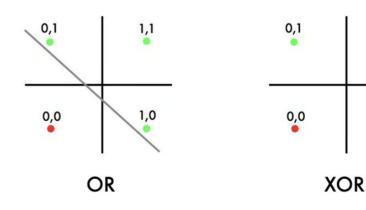
- Single layer perceptron does only linear classification
- Can't calculate the logical xor function

The XOR problem

1,1

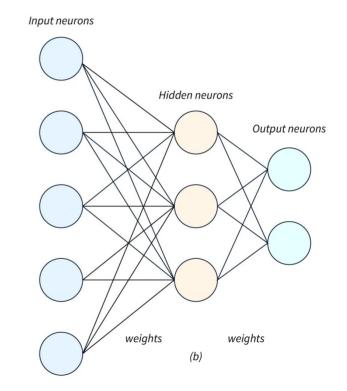
1,0





Training of multilayer perceptrons

- Multi-layer perceptron can calculate any logical function
- But how to train it?
- The output of a response neuron depends on all the inner neurons
- Solution:
 - Use gradient descent on the errorfunction and calculate the gradients via backpropagation



Chain rule

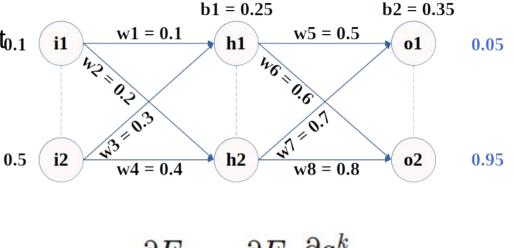
ground truth

- We need to calculate the gradiant of the error function for each weight_{0.1}
- The derivative of a function, which is a composition of functions

h(x) = f(g(x))

is

f'(g(x)) * g'(x)



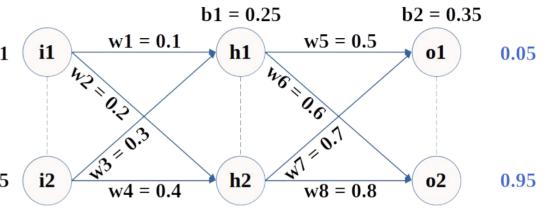
$$rac{\partial E}{\partial w_{ij}^k} = rac{\partial E}{\partial a_j^k} rac{\partial a_j^\kappa}{\partial w_{ij}^k}$$

Backpropagation

ground truth

- The loss is a function of the parameters of the network $(w_i, b_i) = 0.1$
- The loss is the average of the loss for all pairs of input and ground truth
- The loss for one input/GT pair is 0.5 the accumulation of the losses of all output-neurons
- The loss of one output neuron is a function of the difference between the output and the ground truth

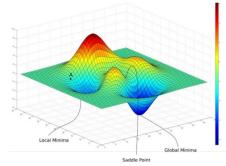
$$E = \frac{1}{2} \sum_{c} \sum_{j} (y_{j,c} - d_{j,c})^2$$



• gradiant at the output neuron

 $\partial E/\partial y_j = y_j - d_j$

• Calculate gradiants for all weights and biases from output to previous layer using the chain chain rule $\frac{\partial E}{\partial E} = \frac{\partial E}{\partial E} \frac{\partial a_j^k}{\partial a_j^k}$

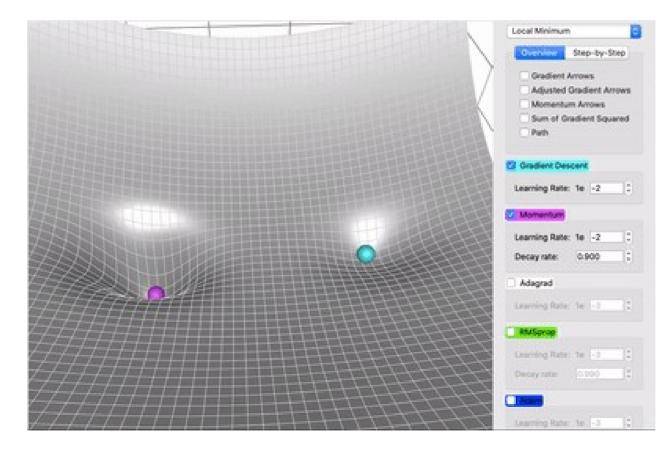


Optimizers

- Backpropagation calculates the gradients of the error function
- Optimizer decides how to update the weights

- Stochatical gradient descent (SGD)
 w = w - learning_rate * g
- SGD with momentum
 - Calculate a running exponential average of gradients from previous steps
 - More weight given to closer values
 - Parameter gamma controls the impact of the momentum (often 0.9)

SGD with and without momentum

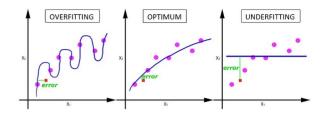


Adaptive Moment Estimation (Adam)

- Use first order and second order momentum, i.e. average and variation of previous gradients
- Adapt the learning rate for each parameter based on the previous gradients and squared gradients

- Meta-parameters
 - Learning rate
 - Beta₁: decay rate for the average (0.9)
 - Beta₂: decay rate for the variance (0.999)

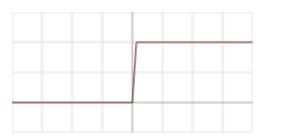
Mini batches



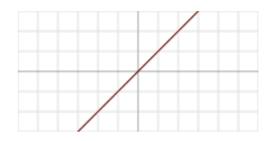
- Calculation of gradients and update of weights in each epoch, can be done using:
 - online learning
 - For each input, ground truth pair
 - Mini batches
 - For a given number of input, ground truth pairs
 - Full Batch
 - For all input, ground truth pairs in the training set
 - Full batch is gradient descent instead of stochastic gradient descent

- Mini batches
 - Less memory needed
 - Adds noise which can help to
 - Generalize
 - Not get stuck in local minima
 - Use smaller learning rate with larger batch-size
 - For historical reasons the batch size is often a power of 2 : 32, 64, 128, 256, ...
- The order of the input, ground truth pairs is often randomized for each epoch

Activation Functions



- Threshold (step function) of perceptron not good for gradient descent
- The derivative is undefined at 0 and 0 anywhere else
 - We need activation functions that are
 - Continuously differentiable
 - Nonlinear



• With linear functions we can only get linear results, independent of the number of layers

Activation Functions

- Saturating
 - vanishing gradient problem

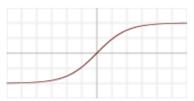
• Non-saturating

- Exploding gradients
 - Batch Normalization

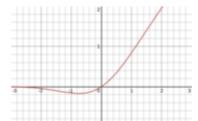
Rectified Linear Unit (ReLU)

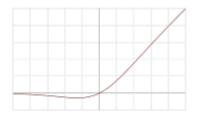
dead neurons

tanh



Gaussian Error Linear Unit (GELU) Sigmoid Linear Unit (SiLU)

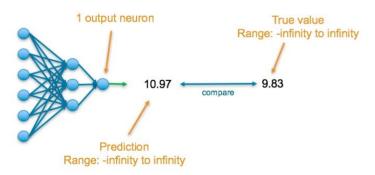


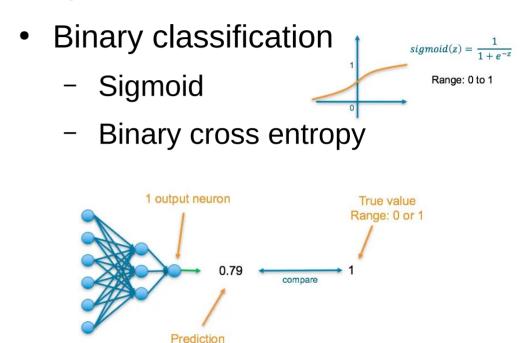


Sigmoid

Loss Functions and Activation Functions for output layers

- Regression
 - Linear or ReLU
 - MSE



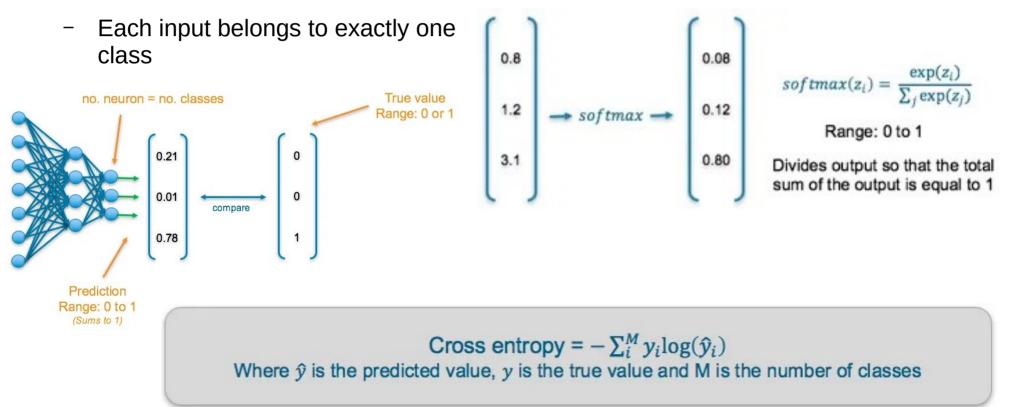


Range: 0 to 1

Binary cross entropy = $-(y \log(\hat{y}) + (1 - y)\log(1 - \hat{y}))$ Where \hat{y} is the predicted value and y is the true value

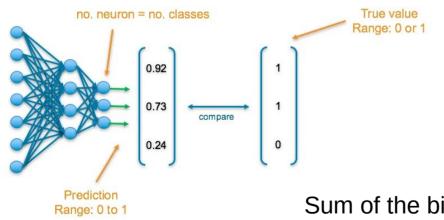
Loss Functions and Activation Functions for output layers

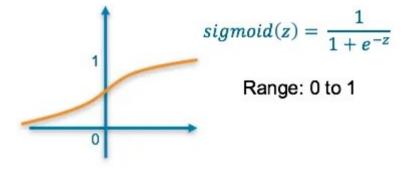
Categorial classification



Loss Functions and Activation Functions for output layers

- Categorial classification
 - Each input can belong to multiple classes





Sum of the binary cross entropies of the output neurons

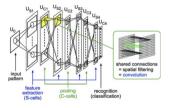
Binary cross entropy = $-\sum_{i}^{M} (y_i \log(\hat{y}_i) + (1 - y_i)\log(1 - \hat{y}_i))$ Where \hat{y} is the predicted value and y is the true value

Part 2 – Neural Networks for bioimage analysis

Convolutional Neural Networks - Timeline

Neural network model for a mechanism of pattern recognition unaffected by shift in position — Neocognitron —

Neocognitron



Fukushima, Kunihiko

LeNet

"Gradient-based learning applied to

document recognition"

Subsampling

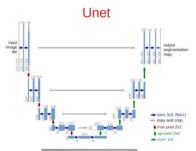
242

16 5e5

Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.

AlexNet does well in ImageNet Large Scale Visual Recognition Challenge

U-Net: Convolutional Networks for Biomedical Image Segmentation



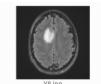
Olaf Ronneberger, Philipp Fischer, and Thomas Brox

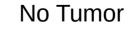
ANNs in Image Analysis

- image classification
- detection + tracking + object classification
- semantic segmentation
- instance segmentation
- image transformation

- Image classificaton
 - Classify the image as a whole (cat, dog, ...)
 - Input: image
 - Output: Label / Probability for class

Tumor





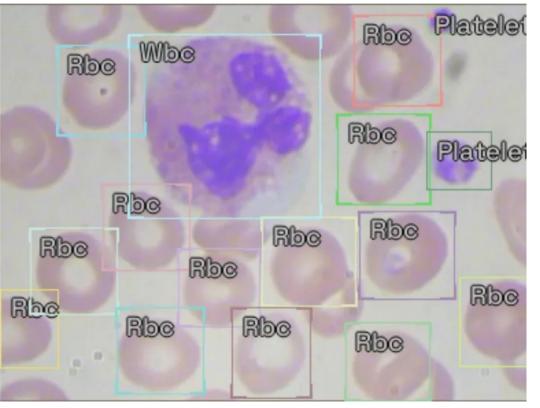
б по

8 no.jpg

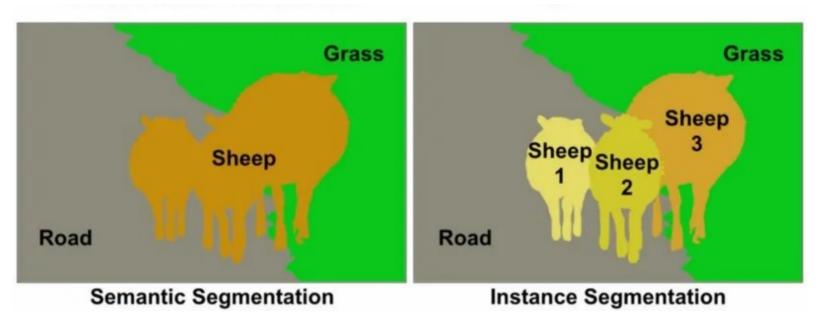
Object Detection and classification

- Find bounding boxes of objects and classify objects
- Input: Image
- Output: bounding boxes and labels

Detection and classification of blood cells

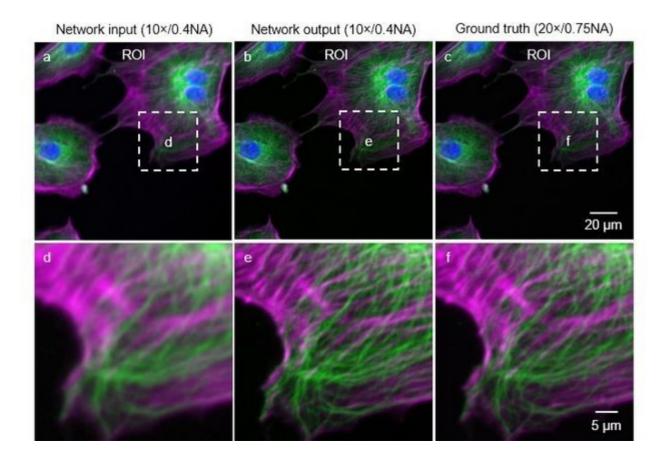


Segmentation



- Input: image
- Output: mask or index mask or probability maps for each class

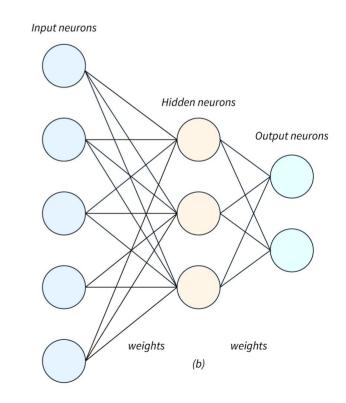
Image transformation



- Input: Image
- Output : Image
 - usually of the same type as the input image
 - the content is transformed, not the image type

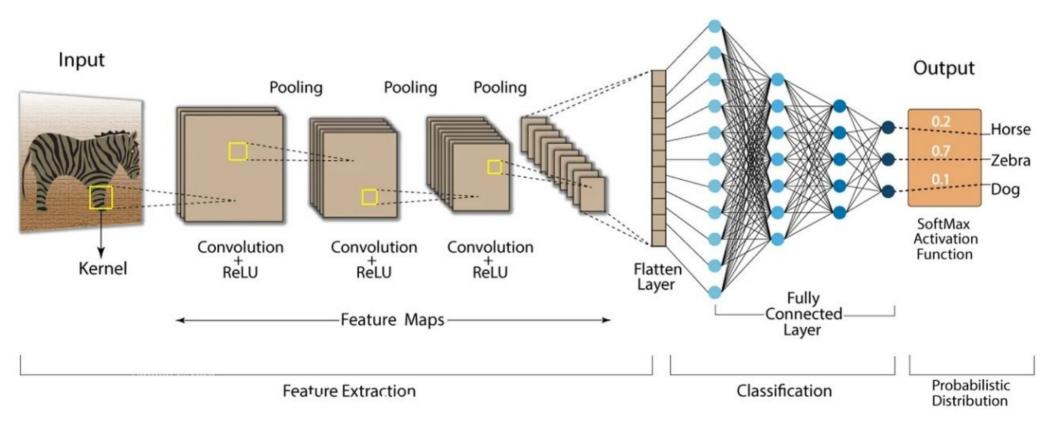
MLPs or Fully Connected Neural Networks for image analysis

- Problems:
 - Images can be big
 - A lot of input neurons
 - A lot of connections
 - A lot of parameters
 - The spatial relations of the pixels/voxels are lost
 - The networks must spontaneously learn to extract useful features at the right scales
- Solution :
 - Convolutional Neural Networks
 - Add convolutional layers and pooling layers before the fully connected part

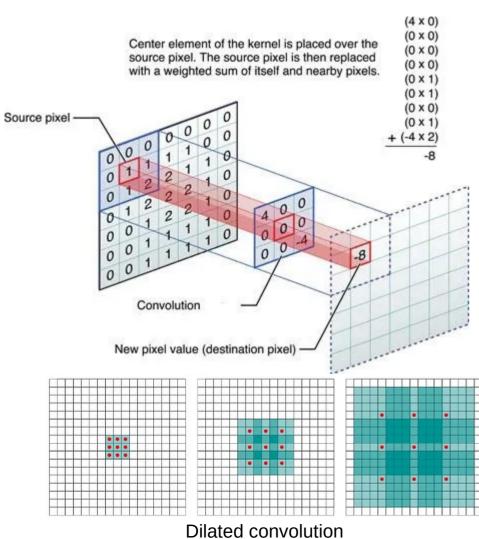


CNNs

Convolution Neural Network (CNN)



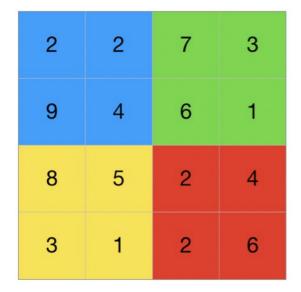
Convolution layer

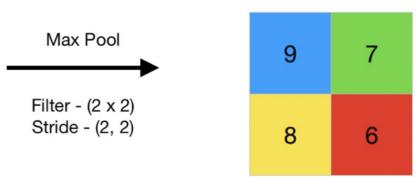


Input image Convolution Kernel Feature map $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

- Values at the borders are missing
 - Padding
 - Shrink result image
- Hyperparameters
 - nr. of filters (feature maps, convolutions)
 - kernel_size (nxm)
 - Strides (pxq)
 - The distance the kernel moves in each step
 - Padding
 - Dilation

Pooling Layers



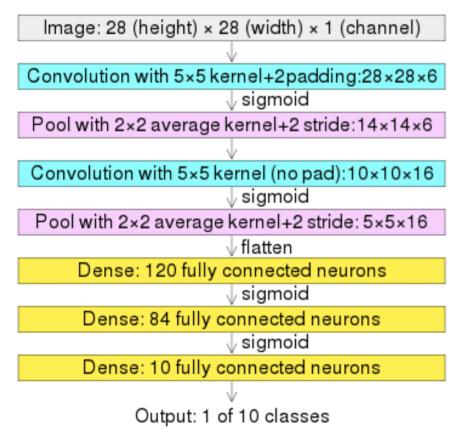


- Max pooling / Average pooling
 - Reduce size
 - Local shift invariance
 - Keep most significant info

- пуреграгатнететя
 - Pool size (nxm)
 - Stride
 - Often equal to pool size

CNNs examples LeNet - 1989

LeNet

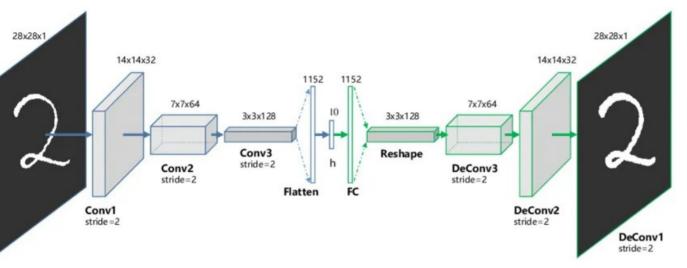


- Yann LeCun
- Recognition of handwritten digits

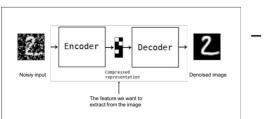
AlexNet

AlexNet 2012, ImageNet

Autoencoders

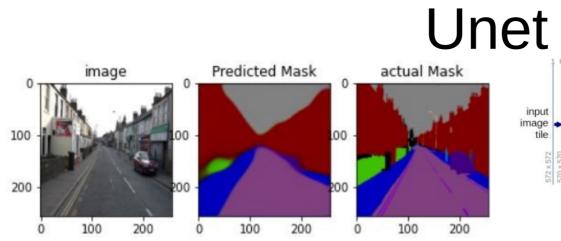


- Unsupervised
 - Encoder creates a compressed version h of the input
 - Decoder reconstructs h to create the output
 - Error is calculated between the input and its reconstructed version

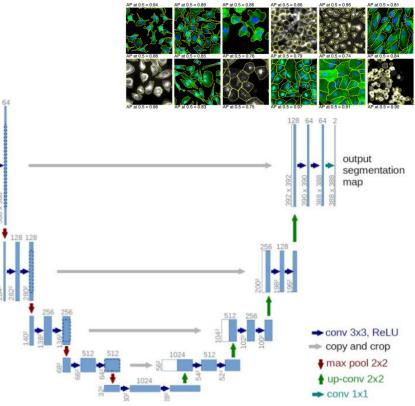


- What is learned was originally the compressed version of the input h
- However autoencoders are also used for :
 - Finding feature sets
 - Principal component analysis
 - De-noising of images

...



- Problems for semantic segmentation in CNNs
 - The scale information is lost, everything is based on the smallest feature maps
- Unet
 - Supervised
 - Autoencoder architecture with interconnections between encoder and decoder layers
 - Fully convolutional neural network



- Unet can directly be used for semantic segmentation
- Unet is also the basis of instance segmentation networks, like
 - stardist
 - cellpose
 - . . .

tile