
Curriculum Vitae Last Updated: September, 2013

Andrea Falconi
programmer

andrea.falconi@gmail.com

Profile
I am a programmer working as a consultant on the architecture, analysis, and design of large-
scale software systems. I specialise in the application of mathematical techniques (e.g. algebraic
specifications, functional programming) to the specification, construction, and verification of de-
pendable, high quality computer programs. Besides coding, my duties usually entail: strategic
technical thinking, design of effective architectures and frameworks, driving product development,
definition of technical standards, technology selection, and mentoring development teams.

Education
I studied towards the present-day equivalent of a MSc/PhD in pure mathematics, but had to
put aside my studies to start working; however, advanced knowledge of mathematics made it
possible to teach myself computer science and how to program with relative ease.

Experience
I have some 15 years’ experience in software development and have worked on large projects
in different domains such as earth-observation, bio-informatics, medical and business systems.
I also have extensive experience in open-source. I have worked with most of the mainstream
technologies and platforms—SOA, J2EE, .NET, Oracle, SQL Server, etc.

Employment Record
2005 - Present Senior Developer/Architect at Dynamic Visual Technologies

dvt.co.za
Over the years, I have been deployed at several of DVT’s local and international clients to
implement specialised components as well as to consult on the development of financial & trad-
ing platforms, retail & payments systems, and GIS. DVT’s clients I have worked for include:
Woolworths (woolworths.co.za), ACI (aciworldwide.com), Truworths (truworths.co.za), Allan Gray
(allangray.co.za), Visa/Fundamo (fundamo.com), IMQS (imqs.co.za), Achievement Awards Group
(awards.co.za), Direct Axis (directaxis.co.za).

2002 - 2005 Research Associate/Programmer at the University of Dundee
dundee.ac.uk

I worked on distributed and parallel algorithms for the storage, management, visualisation, and
analysis of digital microscope data and metadata as part of the Open Microscopy Environment
initiative (openmicroscopy.org)—a joint project amongst the universities of Dundee, Harvard,
MIT, Wisconsin-Madison, and NIA Baltimore.

Before 2002
The above summarises the last 10 years. Before then I developed distributed systems for ESA
(European Space Agency) and Melograno; I also had several experiences as a Web developer.

mailto:andrea.falconi@gmail.com
http://www.dvt.co.za/
http://www.woolworths.co.za/
http://www.aciworldwide.com/
http://www.truworths.co.za/
http://www.allangray.co.za/
http://www.fundamo.com/
http://www.imqs.co.za/
http://www.awards.co.za/
http://www.directaxis.co.za/
http://www.dundee.ac.uk/
http://www.openmicroscopy.org/


Skills & Technologies
Software technology is the result of the application of scientific knowledge (Computer Sci-
ence/Mathematics) to the solution of concrete problems and is produced by a disciplined ap-
proach based on software engineering principles. A sound grasp of both the scientific knowledge
and engineering principles used to produce software enables me to quickly become proficient
with new technologies (e.g. learning a new programming language or framework) as well as to
play in the technology-making arena (e.g. creating a new language or framework).

Below is a summary of my programming skills and the technologies I have been working with.

Specification,
Construction,
and
Verification

Abstract algebra, discrete mathematics, mathematical logic; automata,
formal languages, compilers, interpreters; algorithms & data struc-
tures; concurrent, parallel, and distributed programming; object-
oriented, functional, and formal methods of analysis & design; archi-
tectural and design patterns, frameworks; formal verification; regres-
sion/integration/performance/system testing; debugging & profiling.
Technologies: C, C++, C#, F#, Java, Scala, Haskell, SQL, UML, XML,
XSLT, HTML, CSS, Perl, Ruby, JavaScript, ActionScript, xUnit/mock
frameworks, QuickCheck, several performance benchmarks.

Operating
Systems
and
Networking

Hardware architectures; processes and threads, IPC, scheduling, virtual
memory, I/O, file systems; network layers, protocols, addressing, routing.
Technologies: Knowledge of Unix and Windows platforms, system li-
braries, shells, Linux system administration; Internet protocols (IP, TCP,
UDP, HTTP, etc.) and their C/C#/Java/Haskell APIs.

Databases Relational algebra and calculus; entity-relationship modelling; normali-
sation; indexing; transactions.
Technologies: Oracle, SQL Server, PostgreSQL.

Distributed
Systems

Client-server & peer-to-peer models, message-oriented middleware &
distributed objects, n-tier architectures, directory & discovery services,
security, concurrency control, failure handling, replication, performance,
scalability, transparency.
Technologies: J2EE, .NET, SOA, Web Services, REST, Ajax, CGI, sev-
eral application servers and Web frameworks, CORBA, ICE.

Software
Process

Waterfall model, rapid application development, iterative & incremental
methods; software configuration management.
Technologies: Agile, TDD, XP, RUP; most of the commercial and open-
source version control systems; several build, continuous integration, re-
quirements & bug tracking systems.



Samples
Due to contractual agreements (confidentiality, copyright, etc.), I cannot disclose any technical
information regarding the projects that I have been working on for the past 8 years. However, I
do have some samples on GitHub that you could use to evaluate my skills and asses how your
organisation may benefit from them:

• Introducing Mathematical Methods —
https://github.com/lambdacat/samples/raw/master/intro-math-methods.pdf

• ISO 8583 Validation —
https://github.com/lambdacat/samples/raw/master/iso8583-validation.pdf

• A Taste of Algebra of Functions —
https://github.com/lambdacat/samples/raw/master/algebra-of-functions.pdf

Please read below for the context in which these samples should be examined and for a summary
of their contents.

Although I am well-versed in mainstream software development (e.g. object orientation, SOA,
etc.), I believe my most valuable expertise lies in the application of mathematical techniques to
the engineering of dependable, high quality, yet cost-effective systems. Indeed, every so often, I
give talks on the topic of mathematics in software engineering. A common thread in these talks
is to show how using mathematical techniques to develop software can improve over the current
state of the art, leading to higher quality products in a fraction of the time.

Introducing Mathematical Methods summarises my prototypical talk of this type for a non-
technical audience; it is essentially a business case for the adoption of mathematics in software
engineering. In it, you will find a case study in which are quantified the benefits of the mathe-
matical approach over the mainstream, object-oriented one. Following this talk, there is usually
a technical session in which I demonstrate development using algebraic techniques.
ISO 8583 Validation is the transcript of one of those sessions, showcasing a validation frame-
work for financial transactions.

I have also run several workshops to teach algebraic methods of software development.
A Taste of Algebra of Functions contains material that I use during the first of a series of work-
shops; it presents several problems involving central themes in programming (such as abstraction,
reuse, correctness, performance) and their mathematical solutions along with the corresponding
implementation in the Haskell functional programming language. It is a good example of how to
specify, construct, and verify dependable, high quality computer programs.

https://github.com/lambdacat/samples/raw/master/intro-math-methods.pdf
https://github.com/lambdacat/samples/raw/master/iso8583-validation.pdf
https://github.com/lambdacat/samples/raw/master/algebra-of-functions.pdf

