Complex data at MRI

Volker Baecker Montpellier RIO Imaging MRI-TIGR

24/11/2011

- regional imaging facility
- 3 departments optics, cytometry, microtomography rx
- 11 locations crbm, inm, iurc, cirad, igh, lagaillarde, igmm, dbs, irb, ircm, isem
- 2010 620 active users, 189 groups, 67 machines
- 2011 641 active users, 226 groups, 65 machines (46 acquisition, 12 cytometer)
- 23 staff members

> ~ 37 000 worked hours/year

470 training sessions

> 45 equipments

17 PC analysis

> 630 users

> ~ 37 000 worked hours/year

470 training sessions

> 45 equipments

17 PC analysis

> 630 users

MRI - the facility

Flow

Cytometry

Devices : tubes, plates

Cell analyser up to 10 fluorescence and 2 morphological parameters

High speed cell analysis

Large cell population

Device: tubes, plates, cloning unit

High speed cell sorting up to 4 populations

Safety L2 Lab

Cell Sorter

> ~ 37 000 worked hours/year

470 training sessions

> 45 equipments

17 PC analysis

> 630 users

> ~ 37 000 worked hours/year

470 training sessions

> 45 equipments

17 PC analysis

> 630 users

MRI - systems

- cellomics fully automated microscope high content screening
- widefield/confocal mosaic acquisition
- widefield/confocal time-lapse acquisition
- nanozoomer slide scanner
- omx structured illumination microscopy (superresolution)
- skyscan microtomography rx

HCS - cellomics

High Content Analysis/Screening for thousands to millions of objects

disk array with 4 TB

Mosaic acquisition

Mosaic acquisition with a standard widefield microscope (Leica DM6000)

E. Savary, INM, Montpellier

Time-lapse acquisition

Wide-field Time-lapse acquisition

multichannel timelapse ~20 GB

> 6 wells plate containing HCT116 cells expressing G1 and S-G2-M fluorescent markers (A. Coquelle, IRCM, Montpellier)

Low light illumination = increased cell survival Software autofocus = no gross focus loss during 2 days Motorized stage = increased sampling and conditions/reproductibility

Superresolution microscopy surpasses confocal microscopy and provides new insight for the understanding of cellular processes

multiple GB files

MRI – current data management

Image formats and metadata

- metadata necessary to interpret image
- different file formats can handle different sets of metadata
- different applications handle different file formats
- when converting from one file format to another, metadata are often lost
- Minimal data needed:
 - data-format (8-bit, 16-bit,...), byte-order, xyzct, width, ...
 - voxel size, time interval
 - information about optical system:
 - numerical aperture, magnification, wavelength, type of microscope, pinhole size

Open microscopy envirenment

OME ontology for microscopy

Web Image and Data Environment - WIDE

- upload from microscopes
- central storage
- indexed in database
- web-interface
 - online applications
 - data-management
 - sharing
 - metadata
 - history
- applications can access data on the server directly

Network speed

- sftp on gigabit net 16-25MB / sec 1GB / 40sec-60sec
- it can take hours to transfer 10GB
- do not move data around

If the mountain will not come to the prophet, the prophet will go to the mountain

- Remote terminal
 - move only screenshots around
 - application can run where the data is
 - fast
 - no help for centralizing data
 - no help with formats / metadata
 - no help for sharing data
 - no help for concurrent access

If the mountain will not come to the prophet, the prophet will go to the mountain

Distributed agent system

- user wants to run a job J on data D
- D is on machine M in the network N
- user tells a job manager what he wants to do
- job manager looks for an agent that can do the job in all associated networks
- job manager transfers agent J to machine M
- agent J does the job

- application can run where the data is
- no data centralization neccessary
- system can help with formats / metadata
- system can provide data sharing
- system can control concurrent access
- more difficult to apply for highly interactive applications
- security concerns
- system doesn't exist (yet?)

If the mountain will not come to the prophet, the prophet will go to the mountain

- centralized data access via web/application server
 - application can run where the data is
 - system helps centralizing data
 - system can help with formats / metadata
 - system can help with sharing data
 - system can control concurrent access
 - data needs to be moved once
 - limited interactivity
 - additional access via specific client programs possible

Thank you!

Questions / Discussion

