
Workshop: Macro Programming with ImageJ

Volker Baecker - Montpellier RIO Imaging

24.06.2014

2

Contents

1 Introduction 7

2 Getting Started 9
2.1 Macros . 9
2.2 Installing Fiji . 10
2.3 Hello World . 11

2.3.1 Hello World using the log-window 11
2.3.2 Hello World using a dialog 12
2.3.3 Hello World on an image 12

2.4 Excercises . 15
2.5 Answers . 16

3 The ImageJ Macro Language 19
3.1 Comments . 20
3.2 Literals . 21
3.3 Expressions, Operators and Datatypes 23

3.3.1 Numbers . 24
3.3.2 Strings . 31
3.3.3 Booleans . 32
3.3.4 Numbers as Bit-Strings 34
3.3.5 Comparison Operations 37

3.4 Variables and Assignments . 38
3.4.1 Automatic type conversion 40
3.4.2 Arrays . 41

3.5 Conditional code execution . 42
3.6 Loops . 45

3.6.1 The for–loop . 45
3.6.2 The while–loop . 51
3.6.3 The do–while–loop . 53

3.7 User–defined functions . 54
3.7.1 Variable scope and global variables 56
3.7.2 Parameter passing by value and by reference 60
3.7.3 Modelling with functions 61
3.7.4 Recursion . 61

3

CONTENTS

4

List of Figures

2.1 The FIJI launcher window . 10
2.2 A message in the log window . 11
2.3 A message on a dialog . 12
2.4 A text displayed on an image . 13
2.5 The macro interpreter . 14
2.6 The dialog now has the title ”Greetings”. 16
2.7 The result of drawing a rectangle around the message. 17
2.8 The result image after the recorded macro has been applied to it. 17

3.1 IEEE 754 Double Floating Point Format 29
3.2 A pattern created by the example macro 50
3.3 A random walk . 53
3.4 Example output of turtle–graphics 60

5

LIST OF FIGURES

6

Chapter 1

Introduction

In this workshop you will learn how to write and use macros for the automation
of image analysis tasks with the public domain software ImageJ[9].

Ideally you have already used ImageJ before but you know nothing or very
little about programming. If this is not the case you might still find parts of
the workshop interesting. If necessary you can discover ImageJ in the same
time that you learn the macro programming and if you are already a skilled
programmer you can still find information of how to work with ImageJ specific
objects.

7

CHAPTER 1. INTRODUCTION

8

Chapter 2

Getting Started

In this chapter we will explain what ImageJ macros are, what you can do with
them and what limitations they have. In order to be able to write macros will
install FIJI. FIJI[8] stands for ”FIJI is Just ImageJ”. FIJI is a distribution
of ImageJ that comes with a number of extensions (plugins and macros) for
biological-image analysis.

2.1 Macros

In ImageJ, macros are scripts, written in the ImageJ-macro language[6], that
can be executed by ImageJ and that allow to automatize most of the things
that you can manually with ImageJ. All entries in the ImageJ menus can be
called from a macro. Furthermore the macro language provides some basic data
types like numbers and strings and basic programming constructs like loops and
conditional execution. Finally it provides an interface to ImageJ’s objects and
tools like images, files, histograms, regions of interest (roi), the roi-manager, the
curve fitting tool, overlays and more.

Macros can run completely without user interaction (in batch mode) or
with user interaction. A macro can have a simple user interface that allows
to adjust parameter values. Macros can be integrated into ImageJ as ImageJ
menu commands or as tool buttons. They can be run from the command line
of your operating system or from ImageJ and they can be triggered from events
like the opening of a new image in ImageJ. They can even be run from within
other software packages like Cellprofiler[5] or KNIME[4].

ImageJ allows the usage of other scripting languages. The standard ImageJ
distribution comes with JavaScript as scripting language and FIJI has support
for JavaScript, Jython, JRuby, Clojure and BeanShell. What is the difference
between these scripting languages and the ImageJ-macro language? Technically
the ImageJ macro language is interpreted by ImageJ while the other languages
are either interpreted by a special java program or compiled into java-bytecode
that is executed by the java virtual machine. The world macro is an abbre-

9

CHAPTER 2. GETTING STARTED

viation for macroinstruction. In assembler and other programming languages
macroinstructions are used as a shorthand for multiple basic instructions. The
macro is replaced by a pre-processor by the basic instructions. In a similar way
ImageJ’s macro language can be thought of as allowing to bundle a number of
basic ImageJ commands, give them a name and allow to run them using that
name or by a keyboard shortcut. This point of view is supported by the fact
that ImageJ macros can be created by recording the menu commands called in
an interactive ImageJ session. However it has some elements that go beyond
usual macro languages mainly the ability to define functions and to call them
recursively, which means that a function can directly or indirectly call itself
with eventually modified parameters and the execution repeats until a condi-
tion is fulfilled. The main difference is in the complexity. The ImageJ macro
language is build to provide enough glue to automatize ImageJ. The scripting
languages are general purpose programming languages that can access ImageJ’s
application user interface. They are therefore more complex and more difficult
to learn. However the minimalism of the macro language comes with a price.
Although beginners will easily get started with it, more advanced things might
be harder to do. Another problem is the limited re-usability of macros. Since
there is no import or include statement for macros, functions must be defined
in each macro. The only way to make a function available in multiple macros
is to make it available to all macros.

ImageJ allows to write plugins in the java programming language as well.
As a difference from macros and scripts these plugins need to be compiled and
installed before they can be run.

As a conclusion from the above, the ImageJ macro language is certainly a
good choice if you want to automatize an analysis protocol that you can execute
manually with ImageJ. If you need to implement complex new image analysis
algorithms, scripting languages or plugins might be a better choice.

2.2 Installing Fiji

Download the version of Fiji appropriate for your operating system from http:

//fiji.sc/Downloads. Unzip the archive file and save the containing folder
Fiji.app into a directory for which you have write access. Enter the folder
Fiji.app and run the application by double-clicking the program that starts
with ImageJ-. By default FIJI will check for updates each time you start it. If
updates are available, accept the check and apply the changes.

Figure 2.1: The FIJI launcher window.

10

http://fiji.sc/Downloads
http://fiji.sc/Downloads

2.3. HELLO WORLD

2.3 Hello World

We will now write the traditional ”Hello World!” example. The idea is that
whenever you start to learn a new programming language you first write a
very simple program that outputs the text ”Hello World!”. This allows you
to learn how to edit and run programs in the new language and programming
environment.

We will write three different versions. One that does the output in a log-
window, another that writes the output on a dialog and a last one that writes
the output into a new image.

2.3.1 Hello World using the log-window

Open the macro-editor from the menu Plugins>>New>>Macro. The macro-
editor will open on a new macro with the name Macro.ijm. The file-extension
.ijm stands for imagej macro. In the editor window enter the following com-
mand:

print("Hello World!");

Listing 1: Hello World using the log-window.

Execute the macro from the menu Run>Run or by pressing ctrl+r. If the log
window was closed it will be opened. The text ”Hello World!” will be written
to the log window each time you run the macro.

Figure 2.2: The ”Hello World” message displayed in the log window.

Now let us examine the macro from listing 1 in detail:

• print is a build in function of the ImageJ macro language that allows
to write output somewhere. By default the output is written to the log
window.

11

CHAPTER 2. GETTING STARTED

• the brackets separate the name of the function from the argument or the
arguments that are passed to the function

• ”Hello World!” is a literal string. A string is a sequence of characters.
It is literal because the characters are directly written down. The macro
language knows that it is a literal string and not a misspelled command
because it is embedded within the ” characters.

• the semicolon is necessary to separates commands in a macro (since this
macro only has one command it would run without the semicolon at the
end).

2.3.2 Hello World using a dialog

Either open the macro editor again from the menu Plugins>>New>>Macro or if
it is still open, open a new macro in the editor from the menu File>>New of the
editor window. This will open a second tab for the new macro. This time enter
the command:

showMessage("Hello World!");

Listing 2: Hello World using a dialog.

Run the macro. It will show the ”Hello World!” message on a dialog. Note
that the dialog is modal. While it is open the execution of the macro is paused
and all other windows of ImageJ are unresponsive. This makes sure that the
user notices the message before he continues working. You can close the dialog
by pressing the ”OK” button.

Figure 2.3: The ”Hello World” message displayed on a dialog.

If you want to know more about the print or the showMessage commands,
call Help>Macro Functions... from the ImageJ launcher window. This will
open a description of all build in functions of the macro language.

2.3.3 Hello World on an image

Since this workshop is about image analysis, we will now display the ”Hello
World!” message on an image. We will do this in a way that does not modify

12

2.3. HELLO WORLD

the pixel values of the image, by using an overlay. We will use the example to
introduce the macro-recorder and to show how to run single macro commands.

Open an image. ImageJ comes with a number of example images. You can
use one of those, for example the ”Fluorescent Cells” image. Download it via
the menu item File>>Open Samples>>Fluorescent Cells (400K). Open the
macro-recorder from Plugins>>Macros>>Record.... Any command you run
will be recorded by the macro recorder now, until you close the ”Recorder” win-
dow. In order to write the text we use the text tool. It is the 9th tool-button on
the ImageJ launcher window (the one labelled ’A’). Note that double clicking the
button opens a dialog that allows to modify the options of the text tool. Select
the text tool, click somewhere in the image and open a rectangular selection.
Type in ”Hello World!”. When done use Image>>Overlay>>Add Selection...

to add the text to an overlay or press ctrl+b. Click somewhere in the image
to get rid of the selection and see the effect of adding the text to the overlay.
We’re done, now let us create the macro from the recorded commands. On the
macro-recorder, press the ’Create’ button. This will open the macro editor with
the list of recorded commands copied into it.

1 //setTool("text");

2 setFont("Serif", 40, " antialiased");

3 setColor("#ffc800");

4 Overlay.drawString("Hello World!", 126, 128, 0.0);

5 Overlay.show();

Listing 3: A macro that writes ”Hello World!” onto an overlay of an image.

Remove the overlay you created when you recorded the macro by using
Image>>Overlay>>Remove Overlay. Now run the macro and make sure it re-
produces the ”Hello World!” message.

Figure 2.4: The ”Hello World” message displayed on an overlay of an image.

We will examine the macro step by step again:

13

CHAPTER 2. GETTING STARTED

1. the line beginning with two slashes is a comment. In this case the macro-
recorder added it to record that the text tool has been activated. It uses a
comment because the selection of the text tool will not modify the result
of the macro. You can remove this line from your macro.

2. setFont is a build in function that sets the font for the drawString func-
tion.

3. setColor sets the foreground color. The foreground color will be used by
the drawString function. However it is used for other purposes as well
and it would be a good idea to reset it after the macro. Colors can either
be passed by name (”black”, ”blue”, ”cyan”, etc.) or by a hexadecimal
representation of the rgb-values (”#ff0000” is pure red, ”#00ff00” pure
green, etc.)

4. the drawString function of the Overlay takes the string to draw, the
location on the image and the angle in which the text will be drawn as
input.

5. the show function of the Overlay makes the overlay visible on the image.

We will now hide and show the overlay by running single macro commands.
Just before the line Overlay.show() insert another line and type Overlay.hide().
Use the mouse to select the newly inserted line and call Run>>Run selected

code from the menu or press shift+ctrl+r. The overlay becomes invisible.
Make it visible again by selecting and executing the next line of the macro.

Another way to run single macro commands is to use the Macro interpreter.
You can open it from Plugins>>Scripting>>Macro Interpreter. In the lower
part type Overlay.hide() and press enter. The command will be executed.
Now type Overlay.show() and press enter. Note that you can use the up and
down arrow keys on your keyboard to select previously executed commands.

Figure 2.5: The macro interpreter allows to run single macro commands.

14

2.4. EXCERCISES

2.4 Excercises
Ex. 1 — Clearing the log window
The command print("\\Clear") clears the log window. Modify the macro in
Listing 1, so that the log window is cleared before the message is written. Run
the modified macro multiple times and compare the behaviour of the original
macro with the behaviour of the modified version.

Ex. 2 — Message dialog with a title
Did you notice that the message window in figure 2.3 does not have a title?
Add a title by modifying Listing 2. In order to give it a title you need to add
a parameter to the call of the showMessage() command. The title needs to be
the first parameter, the text to be displayed the second parameter.

Ex. 3 — Drawing a rectangle on an overlay
Modify the macro in Listing 3! Draw a rectangle around the ”Hello World”
text onto the overlay! Use the command Overlay.drawRect(x, y, width,

height). You need to find the value for x, y, width and height. You can use
the menu item Image>>Overlay>>Remove Overlay to clean the overlay between
different trials.

Ex. 4 — Recording commands In this exercise you will record a number
of commands and apply them to another image. Open an example image. You
can use File>>Open Samples>>Clown (14K). Now start the macro recorder
and execute the following commands:

•Process>>Smooth
•Process>>Find Edges

•Edit>>Invert
Press the Create button of the macro recorder to create the macro. Now close
the image, open another example image, for example File>>Open Samples>>Bridge

(174K) and run the recorded macro on this image.

15

CHAPTER 2. GETTING STARTED

2.5 Answers

Answer (Ex. 1) — Clearing the log window

1 print("\\Clear");

2 print("Hello World!");

Listing 4: In the modified macro the log window is cleared before the text is
written.

In the original version of the macro each time you run the macro a line with
the output text is added to the log window. In the new version the log window
is cleared before the text is written so that the result is a log window with the
output text in the first line each time you run the macro.

Answer (Ex. 2) — Message dialog with a title

showMessage("Greetings", "Hello World!");

Listing 5: The dialog of the hello world message will now have a title.

Running the macro should produce something similar to figure 2.6.

Figure 2.6: The dialog now has the title ”Greetings”.

Answer (Ex. 3) — Drawing a rectangle on an overlay

1 setFont("Serif", 40, " antialiased");

2 setColor("#ffc800");

3 Overlay.drawRect(100,50,300,100);

4 Overlay.drawString("Hello World!", 126, 128, 0.0);

5 Overlay.show();

Listing 6: A rectangle is drawn around the message.

Running the macro should yield a result similar to figure 2.7.

16

2.5. ANSWERS

Figure 2.7: The result of drawing a rectangle around the message.

Answer (Ex. 4) — Recording commands

1 run("Smooth");

2 run("Find Edges");

3 run("Invert");

Listing 7: The sequence of recorded commands should look like this.

Figure 2.8 shows the result of applying the recorded macro to the bridge ex-
ample image.

Figure 2.8: The result image after the recorded macro has been applied to it.

17

CHAPTER 2. GETTING STARTED

18

Chapter 3

The ImageJ Macro
Language

When talking about programming languages it is useful to make a distinction
between the syntax of the language and its semantics. In a natural language
the syntax defines which combinations of symbols form a well-formed sentence.
Semantics connects the words of a well formed sentence to objects and concepts
of the real world or of our imagination. In other words the syntax is about the
form of sentences and the semantics about the meaning.

Likewise for computer languages the syntax defines what a well formed pro-
gram in the language is while the semantics describes the behaviour of the
computer when the program is executed. The behaviour can be described in
terms of input, inner state of the machine and output [10].

We will not give a formal definition of the syntax of the ImageJ macro
language. However we will examine its structure in detail. In the last chapter
we already saw that a macro is a list of statements separated by semicolons.
We statement can be one of the following:

• a comment

• a literal

• an expression

• an if/else statement

• a looping statement

• a function call

• a declaration of a global variable

• a function definition

• a macro definition

19

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

Each item in the above list needs its own definition now. In the suite of
this chapter they well be explained informally one by one and for each language
construct we will examine its semantics.

Besides of syntax and semantic we will need to discuss how the different
language constructs are intended to be used and what pitfalls should be avoided.

3.1 Comments

A comment is a text that the programmer provides for the human reader of
the macro. It is ignored when the macro is executed. There are two forms of
comments. Comments starting with two slashes extend to the end of the line.
Multi-line comments start with /* and end with */.

1 // a single line comment

2

3 /* a multi

4 * line comment

5 */

6

7 print("\\Clear");

8 print("Hello World!"); // Another comment

Listing 8: The different forms of comments.

There are three or four ways in which comments are used. At the top of
each macro file as well as before each macro definition and function definition a
comment should explain what the purpose of the code is and how it should be
used. Furthermore at the top of each file the author, the copyright holder, the
date and the conditions for the usage of the code should be noted. The usage
conditions should either tell that the code is in the public domain or under
which license the code is distributed.

Another way in which comments are used is to explain parts of the code that
are difficult to understand. However before commenting in this way, you should
first try to make the code better so that the comment will not be needed.

Finally you can use comments in the process of debugging a macro to tem-
porarily deactivate a one or multiple commands. You should take care to remove
any such comments after the debugging session is finished.

20

3.2. LITERALS

1 /*

2 * This macro implements the famous "Hello World" example.

3 * It draws the message onto an overlay of the active image.

4 *

5 * written by Volker Baecker, 2014

6 *

7 * contact: volker.baecker@mri.cnrs.fr

8 *

9 * This macro is in the public domain,

10 * feel free to use and modify it.

11 */

12

13 setFont("Serif", 40, " antialiased");

14 setColor("#ffc800"); // The hexstring encodes the color orange

15 // with the RGB components R=255, G=200, B=0

16 Overlay.drawString("Hello World!", 126, 128, 0.0);

17 Overlay.show();

Listing 9: The ”Hello World” example with comments.

3.2 Literals

Literals in a programming language are values that can be written directly
without passing by a function call or an expression, i.e. values that have a
literal representation. In the ImageJ Macro Language there are 3 types that
have a literal representation:

• numbers (integer or real)

• text (strings)

• truth values (boolean)

The ImageJ macro language internally handles integers and real numbers in
the same way and boolean values are represented as 0 and 1. We could there-
fore simply say that there are only two datatypes with a literal representation,
numbers and strings. However conceptually the distinction between three or
four types seems to be more useful. You will find more information about the
data types in the next section. Here are some examples of literals:

21

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

1 7;

2 3;

3 8.5;

4 4.3;

5 3542364758666;

6 ’f’;

7 "f";

8 "FIJI";

9 "’fiji’";

10 ’"fiji"’;

11 "#&-^@*%";

12 "line1\nline2\tcolumn2";

13 (true);

14 (false);

15 0xC4F;

Listing 10: Examples of literals.

1 7

2 3

3 8.5

4 4.3

5 3.5424E12

6 f

7 f

8 FIJI

9 ’fiji’

10 "fiji"

11 #&-^@*%

12 line1

13 line2column2

14 1

15 0

16 3151

Listing 11: Log output when running the macro with the literals.

Let us have a closer look at the literals and the output they produce when
running the macro:

1–2 These are the positive integer numbers 7 and 3. Note that negative integer
numbers can be written as (-1) where the brackets are not needed in most
situations. however we will not consider this as a literal, but as the unary
negation operator applied to 1.

22

3.3. EXPRESSIONS, OPERATORS AND DATATYPES

3–4 These are the real numbers 8.5 and 4.3. The same comment as in the last
point applies concerning negative numbers.

5 This is a big integer number. Note that the log output displays the number
as 3.5424E12 which is the usual programming variant of the scientific
notation 3.5424 ∗ 1012. In the display the value is rounded to the 5 most
significant decimal digits. If you want to display it with all digits, you can
use the build–in function d2s(3542364758666, 0). d2s stands for double
to string and the second parameter specifies the digits after the decimal
point.

6-12 These are string literals. Note that there are two ways to note string
literals. They must either be embedded in quotes (’) or in double quotes
(”). This allows to easily represent quotes and double quotes themselves
within string literals. Note that \n and \t have special meanings. They
stand for newline and tabulator. As you can see the newline has been
interpreted by the log but the tabulator not. The tabulator is there but
the log-window does not display it. If you copy the text from line 13 of the
log window, back into the macro editor, the tabulator will be displayed.

13–14 These are boolean values. Again the brackets will not be needed in most
situations. Note that for the boolean values true and false, 1 and 0 are
used in the ImageJ Macro Language.

15 A number in hexadecimal format. The ”0x” is just a prefix so that it is
clear that the hexadecimal system is meant. In the hexadecimal system
numbers are represented to the base 16. For the missing digits needed to
represent 10 to 15 the letters A, B, C, D, E and F are used. (C4F)16
means 15 · 160 + 4 · 161 + 12 · 162 = 3151.

3.3 Expressions, Operators and Datatypes

We can combine values to expressions with the help of operators. The vales
can be written in literal form or we can use variables as we will see in the next
section. When a macro is executed expressions will be evaluated and replaced
by the resulting value. The result can be of the same type as the operands or
of a different type.

For example for integer values we have the operator + that will perform the
integer addition. We can build and expression 3 + 5; that will be evaluated to
8 when the macro is run.

As an example in which the result type is different from the types of the
operands we can take a comparison operator. The expression 3<5 will be eval-
uated to true.

Operators that have one operand are called unary. Examples are the unary
negation operator (-) for numbers or the boolean complement operator (!). Op-
erators that have two operands are called binary operators. Examples are the
addition (+) and subtraction (-) operators on numbers. In principal operators

23

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

can have more than two operands, multiple symbols are used in this case to
separate the operands. The ImageJ Macro Language only has unary and binary
operators.

We will now look at the different datatypes in detail.

3.3.1 Numbers

In the ImageJ macro language all numbers are represented the same way. We
can consider the numbers as a finite approximation of a finite subset of the real
numbers.

Numerical Operators

Operations that work on numbers and that yield a number as result are listed
in table 3.1.

Operator Precedence Result Type Name Description
- 1 number negation unary operator that

inverts the sign of
the number

+ 3 number addition addition of two
numbers

- 3 number subtraction subtract operand
two from operand 1

* 2 number multiplication multiplication of
two numbers

/ 2 number division divides operand one
by operand two

% 2 number remainder the remainder of a
division

Table 3.1: Operators that operate on numbers and have numbers as results.

The arithmetical operations should be well known. However the remainder
operator might need some explications. If we have a division d = a/b, then the
remainder is the difference between a and the integer part of the result of the
division multiplied with b. Or, written as an equation:

r = a− ba/bc ∗ b. (3.1)

Now we can start to build simple expression with these operators, before we
build more complex expressions involving multiple operators.

24

3.3. EXPRESSIONS, OPERATORS AND DATATYPES

1 (-5);

2 (-(-5));

3 (-(-(-5)));

4 (-6.767);

5 (-2e308);

Listing 12: Simple expressions formed with the negation operator.

1 -5

2 5

3 -5

4 -6.767

5 -Infinity

Listing 13: The output produced by listing 12.

1-4 An even number of negations of a positive number will give a positive
result and an odd number of negation a negative result.

5 The biggest number representable in the 64bit double precision is around
10308. 2 ∗ 10308 is bigger than the biggest representable number and
is therefore considered as Infinity. The negation operator applied to
Infinity gives -Infinity;

1 5 + 3;

2 3.56 + 2.45;

3 (-3 + -5);

4 (-3 + 5);

5 1e308 + 1e307;

6 1e308 + 1e308;

Listing 14: Simple expressions formed with the addition and the negation op-
erator.

25

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

1 8

2 6.01

3 -8

4 2

5 1.1000E308

6 Infinity

Listing 15: The output produced by listing 14.

The result in line 5 of listing 14 is a big number that can still be represented,
while the result in line 6 is bigger than the biggest representable number and is
interpreted as Infinity.

We skip examples for subtraction and multiplication. You can try them
yourself. However we will have a look at division and remainder.

1 8 / 3;

2 8 / 2;

3 0.642 / 0.123;

4 8 / 0;

5 (8 / 0 * -2)

Listing 16: Simple expressions formed with the division and multiplication op-
erator.

1 2.6667

2 4

3 5.2195

4 Infinity

5 -Infinity

Listing 17: The output produced by listing 16.

Line 4 contains a division by zero. The result is defined as Infinity. In line 5
the result of the division by zero is multiplied by -2 with evaluates to -Infinity.

Listing 18 shows some examples for the remainder operation. It is usually
used for integer arithmetic however using equation 3.1 it can be applied to real
numbers as well. Note that the remainder operation can be used to test whether
an integer number is even or odd. This is exactly the case if the remainder of
the division by 2 is zero. More generally an integer n is divisible by the number
d if n%d = 0.

26

3.3. EXPRESSIONS, OPERATORS AND DATATYPES

1 8 % 2;

2 8 % 3;

3 8.5 % 0.5;

4 8.5 % 0.8;

5 (-3 % 2);

6 0.1 % 10;

Listing 18: Simple expressions formed with the remainder and negation opera-
tor.

1 0

2 2

3 0

4 0.5

5 -1

6 0.1

Listing 19: The output produced by listing 18.

1 The integer part of 8 divided by 2 is 4. 4 multiplied by 2 is eight. Eight
minus eight is zero.

2 The integer part of 8 divided by 3 is 2. 3 multiplied by 2 is six. Eight
minus six is two.

3-5 Apply equation 3.1 to verify the outout.

6 The integer part of 0.1 divided by 10 is 0. 10 multiplied by 0 is 0. 0.1
minus 0 is 0.1.

Special Values

We already saw the special values Infinity and -Infinity. There is one
more special value that is used when the result of an operation or function
is undefined. The value used for an undefined result is NaN which stands for
”Not a Number”. In contrast to Infinity and -Infinity, NaN has a literal
representation. However the macro interpreter will not show the NaN in the log
window. You have to explicitly print it with the print command.

Using only operations the only way to produce a NaN value from a calculation
is by dividing a zero value by a zero value. As we saw before a non zero value
divided by zero yields Infinity. According to [3], zero divided by zero should
result in the NaN value which is the case for the ImageJ Macro Language.

You can create all three special values using the build in macro function
parseFloat().

27

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

1 print(0/0);

2 print(NaN);

3 print(parseFloat("NaN"));

4 parseFloat("Infinity");

5 parseFloat("-Infinity");

Listing 20: Examples of special values.

1 NaN

2 NaN

3 NaN

4 Infinity

5 -Infinity

Listing 21: The output produced by listing 20.

Internal Representation

Before we look at how numbers are internally represented we will shortly explain
how to use number representations with different bases. Are usual number
system uses the base 10. This means when we use 10 digits from 0 to 9 and when
we write a number like 1234 we interpret it as 1∗103 + 2∗102 + 3∗101 + 4∗100.
We can use the same principle with any base we want and when the base is
bigger than 10 we use letters for the missing digits (A=10, B=11, C=12, ...).
The two bases interesting for us here are base 2 and base 16 or the binary and
hexadecimal number representations. In the binary case we use the digits 0
and 1. The number 123410 in the decimal system becomes 100110100102 in
the binary system and 4D216 in the hexadecimal system. Let us check this by
converting back to decimal:

1 ∗ 210 + 0 ∗ 29 + 0 ∗ 28 + 1 ∗ 27 + 1 ∗ 26 + 0 ∗ 25

+1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20

= 1024 + 128 + 64 + 16 + 2

= 1234

(3.2)

4∗162+13∗161+2∗160 = 4∗256+13∗16+2∗1 = 1024+224+2 = 1234 (3.3)

We will now have a look of how the numbers are presented by the computer
internally. The ImageJ Macro Language uses the datatype double of the java
programming language. The type double implements the 64 bit floating point

28

3.3. EXPRESSIONS, OPERATORS AND DATATYPES

format called ”binary64” that is described in the IEEE norm 754 [3]. It is im-
portant to understand the representation of numbers because it has an influence
on the results of calculations and comparisons.

The representation needs to be able to represent fractional parts of numbers
and a range of numbers as large as possible. The floating point representation
does this by allowing to represent numbers with smaller distances for small
numbers while the distances for representable numbers are bigger for bigger
numbers. The representation uses 64 bits. 1 bit is used to represent the sign
that tells us whether the number is positive or negative. 11 bits are used to
encode an exponent and 52 bits are used to represent the fractional part of the
number.

Figure 3.1: IEEE 754 Double Floating Point Format (Codekaizen / CC BY-SA
3.0 [1])

The representation of a number in the floating point format is therefore a
chain of 64 binary digits (ones and zeros) that are interpreted as a real value as
given by equation 3.4.

(−1)sign(1.b51b50...b0)2 × 2e−1023 (3.4)

Note that we can write the 64 binary digits more comfortably as 16 hex-
adecimal digits, where the first 3 encode the sign and the exponent and the
remaining 13 the fraction.

However there are some special definitions:

1. 000000000000000016 is defined as minus zero and 800000000000000016 as
plus zero.

2. if the exponent is zero and the fraction is not zero the number is a sub-
normal and interpreted as:

(−1)sign(0.b51b50...b0)2 × 21−1023 (3.5)

3. 7FF000000000000016 is defined as Infinity and FFF000000000000016 as
minus Infinity

4. if the exponent has all ones in the binary representation and the fraction
is not zero the encoded value is NaN .

The smallest representable numbers in normalized form are those that have
a one in the exponent and all zero in the fraction which evaluates to:

±2−1022 ≈ ±2.22507× 10−308 (3.6)

29

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

The biggest possible finite numbers are those with the value 2046 in the
exponent and all ones in the fraction which gives:

±(1− 2−53)× 21024 ≈ ±1.79769× 10308 (3.7)

The gap between two representable numbers depends on the exponent. Here
are some examples:

• For the exponent 1023 we get the actual exponent 0. The possible range
of representable numbers is from 1 to approximately 2. The gap between
to neighbouring numbers is approximately 2.22045e− 16.

• For the exponent 1076 we get the actual exponent 53. The range is from
9007199254740992 to 18014398509481982 with a gap of 2 between repre-
sentable numbers.

For the above two paragraph see also [11] and [12].
When working with floating point numbers you should be aware that most

values can not be represented exactly, which can sometimes give unexpected
results. Try to evaluate 0.3−0.2−0.1 in the macro editor. The result is −2.7756∗
10−17. We did not introduce comparison operations yet. However considering
the above it should be clear that you should not use equality or inequality
operators with floating point numbers. Instead you should test if the difference
between two values is reasonably small. The expression (0.3− 0.2− 0.1 == 0)
would evaluate to false. However considering that we gave the input numbers
with one digit after the decimal point, indicating a precision of one tenth, the
value −2.7756 ∗ 10−17 is as close to zero as one could reasonably wish for. We
should have therefore used an expression in the form of (0.3− 0.2− 0.1 < 0.01).

Calculations and Precedence

The operators in table 3.1 have different precedence values. Operations with
smaller precedence value are applied before operations with bigger precedence
value, when an expression is evaluated. The operator precedence values reflect
the usual multiplication before addition convention. You can change the order in
which expressions are evaluated by using brackets. Subexpressions in brackets
are evaluated first. Expressions in brackets can include brackets in which case
the expressions in the innermost brackets are evaluated first. Listing 22 shows
some examples.

1 (-1 + 3);

2 (-(1 + 3));

3 2 + 3 * 5;

4 (2 + 3) * 5;

Listing 22: Examples for operator precedences.

30

3.3. EXPRESSIONS, OPERATORS AND DATATYPES

1-2 In line 1 the negation is executed first and the result is 2. In line 2 the
addition is executed first and then the negation, leading to the result −4.

3-4 Because of the operator precedence the multiplication is executed first in
line 3. The result is 17. In line 4 the addition is executed first and the
result is 25.

3.3.2 Strings

Strings represent text. Besides of the comparison operations there is only one
operator defined on strings. The operator has the symbol + which stands in this
case for the concatenation of strings. The concatenation means that the second
string is appended to the first one so that the result is one string that begins with
the first string, followed by the second string. As long as we only have string
literals this is not very interesting. However as soon as we will use variables
the situation will be different. The concatenation of strings is one of the most
important operation in the ImageJ Macro Language. It will for example be
needed to construct file names and paths and to construct parameters that are
passed to commands or build in functions. Although there is only one operator
on strings, there are a number of build in functions that we will discuss later.
These allow for example to find and to replace substrings in strings.

To make it easier to represent the quote characters ” and ’, a string literal
can be embedded in either the double quotes or the single quotes. Some char-
acters preceded by a backslash (\) have a special meaning and are called escape
sequences. We already saw the newline (\n) and the tabulator (\t). The tab-
ulator is not interpreted by the log-window but it can be useful when working
with tables. Other useful escape sequences are (\’), (\") and (\\). Besides
of these the numerical ASCII code [2] in octal form can be used, \040 is for
example the octal code for the space character (32 in decimal notation).

1 "Hello" + " " + "World" + "!";

2 "Hello \"World\"!";

3 ’Hello "World"!’;

4 ’\\n inserts a newline’;

5 "\110\145\154\154\157\041";

Listing 23: Examples for string literals, the concatenation operator and escape
sequences.

31

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

1 Hello World!

2 Hello "World"!

3 Hello "World"!

4 \n inserts a newline

5 Hello!

Listing 24: The output produced by listing 23.

3.3.3 Booleans

Operators that operate on boolean values are the complement (!), the conjunc-
tion operator or logical and (&&) and the disjunction operator or logical or (||).
The complement has the precedence one just like the numerical negation and
the two other boolean operators have the precedence 5 so that when combining
comparison operators with boolean operators and numerical operators the nu-
merical operators are executed first, than the comparisons and at the end the
boolean operators.

The negation of false is true and the negation of true is false. The the
result of the boolean and is one when both arguments are one and zero in all
other cases and the boolean or is zero when both arguments are zero and one in
all other cases. One use of the boolean operations is to combine different com-
parisons in a condition. Conditions will be needed for the conditional execution
of code in if-statements and loops.

1 "not";

2 (!false); 1

3 (!true); 0

4 "and";

5 (false && false); 0

6 (false && true); 0

7 (true && false); 0

8 (true && true); 1

9 "or"

10 (false || false); 0

11 (false || true); 1

12 (true || false); 1

13 (true || true); 1

Listing 25: The boolean operations not, and and or.

Each table that maps the different combinations of input values false and
true or 0 and 1 of the operands to a result value 0 or 1 defines a boolean
operator. If we keep the order of the values for the operands fix, we can define
an operation simply by giving the four different result values. And would for

32

3.3. EXPRESSIONS, OPERATORS AND DATATYPES

example be given by 0001 and or by 0111. There are 16 different possibilities
for the four results with the two values 0 and 1. Each defines a different binary
boolean operator. Some are rather trivial like 0000 and 1111. An exclusive or
(xor) that is true when exactly one of its operands is true would be given by
0110. Note that all the 16 different binary boolean operations can be expressed
by only using and, or and not. and, or and not form a functionally complete
set of boolean operators. In fact not and and or not and or alone do already
form a complete set. And even the single operations nand given by 1110 and
nor given by 1000 form each a complete set on its own.

If a and b are the parameters than the xor operation can be expressed by
the expression ((!a && b) || (a && !b)). You can prove this by putting in
the different combinations of possible values and comparing the resulting truth
table with that of the xor operation.

1 ((!(false) && false) || (false && !(false))); 0

2 ((!(false) && true) || (false && !(true))); 1

3 ((!(true) && false) || (true && !(false))); 1

4 ((!(true) && true) || (true && !(true))); 0

Listing 26: The boolean operations xor expressed with and, or and not.

Given the truth table of an operation you can find the equivalent expression
with and, or and not systematically in the following way. For each row in the
result column that contains a one build an expression by negating the operands
if they are zero and by not negating them if they are one. Combine the operands
using and and the sub–expressions for the rows by using or. For example the
truth table for xor is one for 01 which gives the sub–expression (!a && b). The
only other one is for the row 10 with gives the sub–expression (a && !b). Now
the two sub-expressions need to be combined by or which gives ((!a && b) ||

(a && !b)).

Another useful property is the duality of and and or. This means if you
have an expression containing only and and not you can obtain an equivalent
expression containing only or and not by replacing every and with and or if
you negate each operand and the result of the operation.

a&&b = !(!a||!b) (3.8)

and

a||b = !(!a&&!b) (3.9)

33

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

1 (!(!false || !false)); 0

2 (!(!false || !true)); 0

3 (!(!true || !false)); 0

4 (!(!true || !true)); 1

5

6 (!(!false && !false)); 0

7 (!(!false && !true)); 1

8 (!(!true && !false)); 1

9 (!(!true && !true)); 1

Listing 27: The duality of and and or.

3.3.4 Numbers as Bit-Strings

There is a number of operations that work on the internal binary representation
of the integer part of numbers.

Operator Precedence Result Type Name Description
˜ 1 number bitwise complement unary operator that

changes each 0 to 1
and each 1 to 0

| 2 number bitwise or only zero if both
bits are zero

ˆ 2 number bitwise exclusive or one is exactly one
bit is one

& 2 number bitwise and one if both bits are
one

<< 2 number left shift shifts the bits of
the first operand a
number of places
give by the second
operand to the left

>> 2 number right shift shifts the bits of
the first operand a
number of places
give by the sec-
ond operand to the
right

Table 3.2: Operators that operate on the binary representation of the integer
part of numbers.

These operations work on the binary representation of integer numbers in
java. Note that in the ImageJ Macro Language all numbers are represented as

34

3.3. EXPRESSIONS, OPERATORS AND DATATYPES

floating point numbers. However when you use the above operations the integer
part of the number is converted internally to integer. To fully understand how
they work we need to know how integer values are represented in java.

Two’s complement representation of integer values

Integer values use 32 bits or four bytes in java and can therefore encode 232 =
4294967296 different values. Since the 32 bits are long to write each of the 4
bytes is often written as a two digit hexadecimal number. However to demon-
strate the principle we will use just 3 bits. We could of course just use all three
bits to binary encode the numbers from 0 to 7. But then we could not represent
negative numbers. So we could reserve the leftmost bit to represent the sign
with 0 indicating a positive number and 1 a negative number. This is called the
signed magnitude representation. It has two disadvantages. First there are two
representations for 0 and second the binary arithmetic is not straightforward
since case distinctions depending on the sign must be made. A better represen-
tation is the one’s complement. The positive numbers are represented as before.
A negative number is build from its positive counterpart by applying the bitwise
complement operation. This results in the encodings in table 3.3. Calculations
using the one’s complement are simpler. The binary numbers can for example
be added in the usual way, only when a carry at the leftmost position occurs
it has to be added back at the rightmost position. However there are still to
representations for zero.

decimal binary signed magnitude binary one’s complement
-3 111 100
-2 110 101
-1 101 110
-0 100 111

+0 000 000
+1 001 001
+2 010 010
+3 011 011

Table 3.3: Signed magnitude representation and one’s complement with 3 bits.

We can get simpler binary arithmetic and unique representations by using
the two’s complement. The positive numbers are still encoded as before. The
negative counterpart of a positive number is created by building the one’s com-
plement and adding one to the result.

35

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

decimal binary one’s complement binary two’s complement
-4 100
-3 100 101
-2 101 110
-1 110 111
-0 111

+0 000 000
+1 001 001
+2 010 010
+3 011 011

Table 3.4: One’s complement and two’s complement with 3 bits.

Bitwise operations

The bitwise complement operation changes each bit in the two’s complement
representation of the number from 0 to 1 or from 1 to 0. For example the bitwise
complement of 3 is –4. The binary representation of 3 is 011. Inverting each
bit yields 100 which encodes -4 in two’s complement representation. Of course
our real integer representation uses 32 bits. Note that the bitwise complement
of a number x is −x− 1 if the numbers are represented in two’s complement as
is the case here. The bitwise or will calculate the logical or for each position
in the representation of the two numbers. For example: (−3|3) gives −1. The
binary representations of –3 and 3 are 101 and 011. The bitwise or results in
111 which is the two’s complement representation of -1. For the exclusive or the
result is one if exactly one of the bits is one. (−33) gives −2, since the resulting
representation is 110. The representation of the result of the bitwise and will
have a one at each position at which the representations of both operands have
a one. For example: 3&− 2 gives 2. The binary representation of 3 is 011. The
representation of –2 is 110. The result of the bitwise and is 010 which encodes
2. The shift operations move the bits n positions to the left or to the right.
When shifting to the right the highest bit is preserved, when shifting to the
left zeros are filled in for the missing values. In the binary representation each
digit signifies a power of two. Shifting by n positions is therefore equivalent to
multiplying or dividing (integer division) by 2n. 256 >> 2 results in 64 and
7 << 3 gives 56.

Sometimes the different bytes of a number are used to encode independent
values. This is for example the case for the setPixel(x,y,v) and getPixel(x,y)

build-in functions of ImageJ that in case of RGB images use one single number
for an RGB-color value. The bitwise-operations can then be used to retrieve
and set the independent parts easily. The rightmost byte (eight bits) encodes
the blue value, the next one to the left the green value and the one before this
one the red value. The leftmost byte is unused.

36

3.3. EXPRESSIONS, OPERATORS AND DATATYPES

1 0xFFA900; // color value that encodes a shade of orange

2

3 (0xFFA900>>16) & 0xFF; // red

4 (0xFFA900>>8) & 0xFF; // green

5 0xFFA900 & 0xFF; // blue

6

7 0 | (169<<8) | (255<<16); // create composite value from components

8

9 setForegroundColor(0xFFA900);

Listing 28: Encoding and decoding of rgb-components in one integer value with
the help of bit-operations.

3.3.5 Comparison Operations

The comparison operations are defined for all basic datatypes: numbers, booleans
and strings. The available operations are less than (<), less than or equal (<=),
greater than (>), greater than or equal (>=), equal (=), not equal (!=). Note
that the comparison operations have the precedence 4, so that they are evaluated
after calculations and before the boolean operations.

1 (false < true); 1

2 (true <= true); 1

3 (7>5); 1

4 (0.123 < 0.12300000001); 1

5 (NaN != NaN); 1

6 ("a"<"b"); 1

7 ("fox"<"horse"); 1

8 ("yes"=="yes") 1

9 (parseFloat("Infinity")>9999999999); 1

10 (parseFloat("-Infinity")<9999999999); 1

11 (parseFloat("Infinity")>(parseFloat("-Infinity"))); 1

12 (parseFloat("Infinity")==parseFloat("Infinity")); 1

Listing 29: Examples of comparisons.

Note line 5 in listing 29. NaN is not equal to NaN . The IEEE 754[3]
specifies:

”All numeric operations with NaN as an operand produce NaN
as a result. As has already been described, NaN is unordered, so
a numeric comparison operation involving one or two NaNs returns
false and any != comparison involving NaN returns true, including
x!=x when x is NaN”.

37

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

If you want to test if a value is NaN , you should use the build–in function
isNaN().

3.4 Variables and Assignments

Only working with literal values will not take us very far. We need to write
down the same expression each time we want to evaluate it for different values.
The solution to this are variables. Variables are an important concept in pro-
gramming. A variable has an identifier (the name of the variable) and a value
that has been assigned to the variable with the help of an assignment operator.
Variables can be used in expressions in the way as literals. Variables allow us
to generalize and to write expressions independent from the concrete values for
which they will be evaluated.

The identifier of a variable must only contain letters, digits and the un-
derscore (” ”) character. It must not begin with a digit. Identifiers are case-
sensitive, meaning that for example the lower-case letter ”x” will be considered
a different variable from the upper-case letter ”X”.

Before a variable can be used in an expression it must be defined by assigning
it a value. This is done with the help of the assignment operator (=). At the left
side of the assignment must be a variable and at the right side an expression.
The expression can contain variables itself and even the same variable as on the
left side if it had already been defined before. When the assignment expression
is evaluated, the variables on the right side are replaced by their values before
the expression on the right side is evaluated. The result is then assigned to the
variable on the left side.

1 radius = 11.25;

2 circumference = 2 * PI * radius;

3 area = PI * radius * radius;

4 print("radius:", radius, "circumference:", circumference, "area:", area);

Listing 30: Calculation of the area and circumference of a circle with the help
of variables. Note that PI is not a variable, but a build in constant.

1 radius: 7.25 circumference: 45.5531 area: 165.13

2 radius: 9.25 circumference: 58.1195 area: 268.8025

3 radius: 11.25 circumference: 70.6858 area: 397.6078

Listing 31: Output of listing 30 after changing the radius and running the script
multiple times.

It is important to remember that assignment statements with a variable on
the right side, assign the value of the right-hand variable to the variable on the

38

3.4. VARIABLES AND ASSIGNMENTS

left side as long as basic datatypes are used. They do not create a reference to
the right hand variable. This will be different for arrays as we will see later.

1 balanceA = 1000;

2 balanceB = balanceA;

3 balanceB = balanceB + 500;

4 print("balance A: ", balanceA, "balance B: ", balanceB);

Listing 32: The output of the macro is ”balance A: 1000 balance B: 1500”. Note
that balanceA has not been changed when balanceB has been modified.

There is a number of operators that works on variables. We already saw
the assignment operator that assigns a value to a variable. As a shortcut for
expressions that contain the same variable on the right and on the left side of
the assignment there are the operators + =, − =, ∗ = and / =. a+ = 2 is for
example a shortcut for a = a+ 2, etc.

Furthermore there are the pre and post increment and decrement operators
that increment and decrement the value of a variable either before the evaluation
of the expression or afterwards.

1 a = 5;

2 b = a++ + 3;

3 c = 5;

4 d = ++c + 3

5 print("b:", b, "a:", a); b: 8 a: 6

6 print("d:", d, "c:", c); d: 9 c: 6

Listing 33: The post- and pre- increment operations.

39

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

Operator Precedence Result Type Name Description
++ 1 number pre- or postincrement unary operator that

adds one to the
value of the vari-
able either before
the evaluation of
the containing ex-
pression (preincre-
ment) or afterwards
(postincrement)

−− 1 number pre- or postdecrement unary operator that
subtracts one from
the value of the
variable either be-
fore the evaluation
of the contain-
ing expression
(predecrement)
or afterwards
(postdecrement)

+= 6 number assignment with addition add the value on
the right hand of
the expression to
the variable

-= 6 number assignment with subtraction subtract the value
on the right hand of
the expression from
the variable

*= 6 number assignment with multiplication multiply the vari-
able with the value
on the right hand of
the expression

/= 6 number assignment with division divide the variable
by the value on the
right hand of the
expression

Table 3.5: Operators on variables.

3.4.1 Automatic type conversion

When using the + operator a number can sometimes be automatically converted
into a string. This allows to easily construct messages which contain the nu-
merical values of variables. It works when the first operand is a string. If the
first operand is a number the second operand is expected to be a number as
well and an error will occur.

40

3.4. VARIABLES AND ASSIGNMENTS

1 r = 6.4;

2 message = "radius: " + r + "cm";

3 print(message);

4 message = toString(r) + "cm is the radius";

5 print(message);

6 message = "" + r + "cm is the radius";

7 print(message);

Listing 34: A number is automatically converted into a string when the first
operand of the + operator is a string.

3.4.2 Arrays

Arrays are lists of values. In the ImageJ Macro Language the different elements
in an array can be of different types. When an array is created it is usually
assigned to a variable. An element of the array is read or changed by using an
index. The first index is zero and the last index of an array with the length l is
l − 1.

1 primeNumbers = newArray(3, 5, 7, 11, 13, 17, 19, 23);

2 print(primeNumbers[0]); 3

3 print(primeNumbers[primeNumbers.length-1]); 23

4

5 options = newArray(34, true, "Huang");

6 print("threshold value:", options[0]);

7 print("dark background:", options[1]);

8 print("threshold method:", options[2]);

Listing 35: Two examples of arrays.

Note that arrays are assigned to variables by reference not by value. This
means when you have assigned an array to multiple variables, the same array is
modified via each variable.

1 labels = newArray("one", "TOO", "three", "four");

2 correctLabels = labels;

3 correctLabels[1] = "two";

4 print(correctLabels[1]); two

5 print(labels[1]); two

Listing 36: Arrays are assigned by reference.

Arrays can either be created by listing the containing values or by giving

41

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

the size of the array. In the second case all elements of the array are initialized
with the value 0.

1 a = newArray(3);

2 print(a[0]); 0

3 a[0] = "one";

4 a[1] = "two";

5 a[2] = "three";

6 print(a[1]); two

Listing 37: Creation of an ”empty” array with a given size.

3.5 Conditional code execution

A program must be able to react differently depending on the input values or
its current internal state. This can be achieved by the if/then/else statement.
In the ImageJ Macro Language it has the form shown in Listing 38.

if (condition) {

list of statements 1

} else {

list of statements 2

}

Listing 38: The form of the if/then/else statement

The condition must evaluate to a boolean value. If the condition is true, the
statements in the first block enclosed in curly brackets is executed, otherwise
the statements in the else–block are executed. The else-part of the statement is
optional and can be omitted.

The then–block and the else–block can contain other if statements, however
you should avoid this as far as possible since programs with nested if-statements
are difficult to understand. Note furthermore that when variables are defined in
a then–block or else–block, they will only be defined in the following program,
if the execution passed by the corresponding block. You should only define
variables within a then- or else-block if it is exclusively used within that block,
otherwise you should define the variable outside the if-statement (you can than
use it within).

42

3.5. CONDITIONAL CODE EXECUTION

1 a = getNumber("Enter a number: ", 13);

2 if (a%2==0) {

3 print(a + " is even");

4 }

5 else {

6 print(a + " is odd");

7 }

Listing 39: Simple example of the if/then/else statement.

Listing 39 shows a simple example. The build-in function getNumber is used
to get a number a from the user. The condition of the if-statement tests if a is
even by using the modulo operator. a is even if a modulo 2 is zero. In this case
the first block is executed. In this example the list of statements in the block
consists of only one statement, which prints out the message ”a is even”. If the
condition evaluates to false, i.e. if a modulo 2 is different from zero, the else-
block is executed. It prints out the message ”a is odd”. Note that when a block
contains only a single statement the curly brackets can be omitted. However
this is not advisable since it can lead to errors when modifying the code later.

Listing 40 shows an other example. This time the curly brackets have been
omitted.

1 a = getNumber("Enter a number", -3);

2 if (a<0)

3 result = -a;

4 else

5 result = a;

6 print("abs(" + a + ")=" + result);

Listing 40: Another example of a simple if-statement.

This example calculates and displays the absolute value of the entered num-
ber. If a is smaller than zero the result is the negation of a and therefore positive,
otherwise the result is a.

We can use the if-statement to calculate the maximum of two numbers a
and b. If a is larger than or equal to b the result is b and otherwise the result
is b. The corresponding code is shown in Listing 41.

43

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

1 a = 10;

2 b = 4;

3 if (a>=b)

4 result = a;

5 else

6 result = b;

7 print("max("+a+", "+b+")=" + result);

Listing 41: Calculation of the maximum of two numbers.

Listing 42 shows a more complex example of an if-statement. This time the
code contains multiple if-statements. The else-parts have been omitted. The
then-blocks contain more than one statement and one of the if-statements is
nested, i.e. its then-block contains another if-statement.

1 waitForUser;

2 shiftPressed = isKeyDown("shift");

3 altPressed = isKeyDown("alt");

4 message = "keys pressed: ";

5 counter = 0;

6 if (shiftPressed) {

7 message = message + "SHIFT";

8 counter++;

9 }

10 if (altPressed) {

11 if (counter>0) message = message + ", ";

12 message = message + "ALT";

13 counter++;

14 }

15 if (counter==0) message = message + " NONE";

16 print(message);

Listing 42: Using the if-statement to test which modifier keys are pressed.

The macro will display which of the modifier keys SHIFT and ALT are pressed.
The waitForUser-command pauses the execution of the macro until the user
clicks the ok-button on the dialog that the command opens. This gives you the
possibility to press and hold down the modifier keys. The isKeyDown build-in
function will answer true if the specified key is pressed. At the end a message
indicating that either none of the keys, the shift-key, the alt-key or both have
been pressed. The nested if, in the if-statement that tests if the alt-key is
pressed, allows to add a comma in the case that both keys are pressed. Note
that it would be bad style to write the condition as ”if (shiftPressed==true)

44

3.6. LOOPS

...”. The variable is already boolean and it is unnecessary to compare it to
true or false.

In Listing 43 the variable b is defined in the then-block of the if-statement.
Running the macro will produce an error. Since a is zero the execution does not
pass into the then-block of the first if-statement and b will be undefined in the
condition of the second if-statement. To correct the macro b should be defined
at the top of the macro for example with the expression b = 0;.

1 a = 0;

2 if (a>0) {

3 b=2;

4 }

5 if (b>1) {

6 c=3;

7 }

8 print(c);

Listing 43: The example will produce an error because b will be undefined in
line 5.

3.6 Loops

A loop allows to repeatedly execute a code block. A condition is evaluated
for each iteration of the loop and decides when the loop finishes. In image
processing loops can for example be used to load each image from a given folder
or to apply an operation to each pixel of an image. In the ImageJ Macro
Language there are three different forms of loops. the for-loop, the while-loop
and the do-while-loop.

3.6.1 The for–loop

The for-loop is preferably used when the number of iterations is known from
the start. It has the form shown in Listing 44.

1 for (initialization; condition; increment) {

2 list of statements

3 }

Listing 44: The form of a for-loop.

The initialization is executed one time at the beginning, before the loop
is entered. It is normally used to initialize the counter variable of the loop. The
condition is evaluated before each iteration of the loop. If it evaluates to true

45

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

the loop is entered, otherwise the execution of the code continues after the body
of the loop. The condition usually tests if the counter variable of the loop has
reached a specific value. The increment is executed after each iteration of the
loop. It is usually used to modify the counter variable of the loop.

Listing 45 shows a basic example of a for-loop. The macro prints the numbers
from one to ten.

1 for (i=1; i<11; i++) {

2 print(i);

3 }

Listing 45: The loop prints the numbers from one to ten.

Listing 46 prints out the even numbers from two to ten. It increments the
counter variable of the loop by two in the increment. Let us see how this is
executed. The first time the execution reaches the loop, i is initialized to 2.
The condition is executed and since 2 < 11 evaluates to true, the body of the
loop is entered. The value of i which is currently 2 is printed. The increment is
executed and adds 2 to the current value of i so that i has now the value 4. Now
the condition is executed with i = 4 and evaluates to true. The execution
enters the body of the loop, and so on. After 6 iterations i reaches the value 12.
This time the condition evaluates to false and the execution continues after
the body of the loop.

1 for (i=2; i<11; i+=2) {

2 print(i);

3 }

Listing 46: The loop prints the even numbers from two to ten.

In the next example the counter variable of the loop starts with a high
number and counts down to 2. This macro calculates the nth factorial, i.e.
the multiplication of the numbers from one to n. Remember that i−− means
i = i − 1 and factorial∗ = i stands for factorial = factorial ∗ i. In the
first iteration factorial is one and i five. factorial becomes five. In the next
iteration factorial is five and i four. And so on. In the last iteration i is two
while factorial is 5 ∗ 4 ∗ 3 = 60.

46

3.6. LOOPS

1 n = 5;

2 factorial = 1;

3 for (i=n; i>1; i--) {

4 factorial *= i;

5 }

6 print(factorial);

Listing 47: Calculation of the nth factorial.

Loops are often used to process each element of a given list of elements.
This can for example be the numbers in an array or the files and sub–folders
in a folder. When iterating over the elements of an array, you must remember
that the index of the first element is zero. If the array contains l elements, the
index of the last element is l − 1. If numbers is a variable containing an array,
numbers.length returns the number of elements in the array numbers.

The example in Listing 48 replaces each element of the array by the square
of the element. The build-in function Array.print is used to print all elements
of the array at the end.

1 numbers = newArray(1,2,3,4,5,6,7,8,9,10);

2 for(i=0; i<numbers.length; i++) {

3 numbers[i] = numbers[i] * numbers[i];

4 }

5 Array.print(numbers);

Listing 48: Squaring each element in an array.

The next example will print the names of files and sub-folders in your
home folder, each in a separate line. The macro uses the build-in function
getDirectory with the parameter "home". This answers the path to the user’s
home folder. The path is then passed to the function getFileList, which will
return an array of the names of files and folders in the given folder. The loop
iterates over this array and prints each element.

1 home = getDirectory("home");

2 files = getFileList(home);

3 for (i=0; i<files.length; i++) {

4 file = files[i];

5 print(file);

6 }

Listing 49: Printing the files and folders in the user’s home folder.

47

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

Note that each part initialization, condition and increment can be
missing. If the condition is missing the only way to exit the loop is to exit the
whole macro with an error by using the exit command.

1 i=2;

2 for (; ;) {

3 print(i);

4 if (i>=10) exit("FINISHED");

5 i+=2;

6 }

7 print("EXECUTION WILL NEVER PASS HERE");

Listing 50: A loop with empty an empty initialization, condition and
increment.

The for-loop in Listing 50 prints out the even numbers from two to ten.
When ten is reached the macro is stopped with an error. Since the condition

of the loop is empty, this is the only way to exit the loop.

The initialization and the increment can use other variables as the
counter of the loop and the condition can be any expression that evaluates to
a boolean value. However you should normally avoid to such use such unusual
style, because it can easily misinterpreted by others or yourself when you come
back to the code later.

Listing 51 implements a simple number guessing game. The game is over
either when the player guessed the right number or when he made ten wrong
guesses. A for-loop is used since the maximal number of trials is known before-
hand, however the condition checks not only the counter variable but also a flag
that indicates if the player has won the game.

48

3.6. LOOPS

1 number = floor(100 * random) + 1;

2 guess = getNumber("Guess my number between 1 and 100: ", 50);

3 won = false;

4 for(i=1; ((i<10) && !won); i++) {

5 if (guess==number) {

6 showMessage("you won!");

7 won = true;

8 } else {

9 if (number<guess) message = "my number is smaller, try again: ";

10 else message = "my number is bigger, try again: ";

11 guess = getNumber(message, guess);

12 }

13 }

14 if (!won) showMessage("I won!");

Listing 51: A simple number guessing game.

We will now iterate over all pixels of a two-dimensional image. To demon-
strate this, we will create a new empty image and then create a pattern on
it, by setting each pixel to a value, depending on its coordinates in the image.
Since we can easily access the width and the height of the image and since we
can specify the pixel coordinates by their x and y positions, the easiest way is
to use a nested for-loop. The outer loop iterates over one dimension and the
inner-loop over the other. Note that if the outer loop runs from 0 to N − 1 and
the inner loop from 0 to M − 1, the body of the inner loop is executed N ×M
times. It can therefore be important to not do unnecessary things in the body
of the inner loop.

1 newImage("pattern", "8-bit", 255, 255, 1);

2 width = getWidth();

3 height = getHeight();

4 for(x=0; x<width; x++) {

5 for(y=0; y<height; y++) {

6 setPixel(x, y, x*y % 255);

7 }

8 }

Listing 52: Looping over the pixels of an image.

Listing 52 will produce an image similar to that in Figure 3.2.

Instead of creating a pattern, we can modify the pixel values of an existing
image. Listing 53 shows an example that uses a nested for-loop to invert the
contrast of an 8-bit image, by replacing each pixel value v by 255− v. You need

49

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

Figure 3.2: The pattern created by the example macro in Listing 52.

to open an 8-bit image before running this macro. You can for example use the
bridge-example-image from the menu File>Open Samples>Bridge (174K).

1 width = getWidth();

2 height = getHeight();

3 for(x=0; x<width; x++) {

4 for(y=0; y<height; y++) {

5 value = getPixel(x, y);

6 setPixel(x, y, 255-value);

7 }

8 }

Listing 53: Using a nested for-loop to invert the contrast of an 8-bit image.

By changing the position of an object in an image in a loop we can create an
animation. The example in Listing 54 creates a region of interest in the upper
left corner of the image and moves it along the diagonal until it leaves the image
in the lower right corner. Depending on the speed of your machine, you might
need to change the argument of the wait command. The wait command will
cause ImageJ to pause for the given time in milliseconds before the execution
continues. Without it the macro might run to fast to see the animation.

50

3.6. LOOPS

1 newImage("animation", "8-bit", 800, 800, 1);

2 makeOval(0,0,20,20);

3 Roi.setFillColor("red");

4 for(i=0; i<800; i++) {

5 Roi.move(i, i);

6 wait(20);

7 }

Listing 54: Using a for-loop to create an animation.

3.6.2 The while–loop

The while-loop has the form shown in Listing 55. Before the body of the loop
is entered, the condition is executed. If it evaluates to true, execution continues
in the body of the loop. When the execution reaches the end of the body of the
loop, the condition is evaluated again. If it still evaluates to true the body of
the loop is entered again, otherwise the execution continues after the body of
the loop.

1 while(condition) {

2 list of statements

3 }

Listing 55: The form of the while-loop.

It is clear that While- and for-loop are equivalent in the sense that for every
while-loop there is a for-loop that can simulate it and vice versa. To simulate
a while-loop by a for loop it is sufficient to use the condition of the while-loop
in the for-loop and to leave the initialization and increment empty. A for-loop
can be simulated by a while-loop by putting the initialization directly before
the loop and the increment as the last statement in the body of the loop.

While-loops are preferably used when the number of times the loop will run
is not known at the beginning. This is for example the case when calculating an
iterative approximation of a function. We can for example calculate the square
root of a given number using Newton’s method. According to Newton’s method
if we have an initial approximation A for the value of the square root of N we
get a better approximation by dividing N by A, adding A to the result and
dividing the result by 2.

Ai+1 =
1

2
· (N
Ai

+Ai) (3.10)

We do not now beforehand how many iterations we will need until the result
is good enough. However since we can easily calculate the square we can test if
A2 is sufficiently close to N and in this case we know that we can stop iterating.

51

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

1 input = 121;

2 guess = 1;

3 nr_iterations = 0;

4 while(abs((guess*guess) - input) > 0.000001) {

5 guess = 0.5 * ((input / guess) + guess);

6 }

7 print(guess);

Listing 56: Calculation of the square root using Newton’s method.

Another example is to calculate the number of times a given number can be
divided by 2 using integer division until the result is 1. For example:

9 = 2× 4 + 1 (3.11)

4 = 2× 2 + 0 (3.12)

2 = 2× 1 + 0 (3.13)

So the answer for the input nine is three. Note that this corresponds to the inte-
ger part of the logarithm to the basis 2. Here again we do not know beforehand
how many iteration are needed.

1 n = 128;

2 counter = 0;

3 while(n>1) {

4 n = floor(n / 2);

5 counter++;

6 }

7 print(counter);

Listing 57: Calculation of the integer part of the logarithmus dualis.

As a last example we will present a random walk that stops when it reaches
the border of the image. Imagine an object in the middle of the image. In each
step the object moves a given distance in a random direction, either up, down,
left or right and leaves a trace while moving. Since the direction is random in
each step, we can not know after how many iterations the object will reach the
border of the image.

52

3.6. LOOPS

1 newImage("random-walk", "8-bit", 800, 800, 1);

2 x = 400;

3 y = 400;

4 makeOval(x,y,20,20);

5 moveTo(x,y);

6 Roi.setFillColor("green");

7 while(x>=0 && x<800 && y>=0 && y<800) {

8 x = x + 10 * round((2 * random) -1);

9 y = y + 10 * round((2 * random) -1);

10 Roi.move(x, y);

11 lineTo(x,y);

12 wait(10);

13 }

Listing 58: A random walk that stops when the border of the image is reached.

Note that the way we implemented the random walk the object can actu-
ally stay at its current coordinates for some steps, since the increment for the
coordinates can be zero. You can see an example of a random walk in Figure
3.3.

Figure 3.3: The image created by the random walk in Listing 58.

3.6.3 The do–while–loop

The do–while–loop works similar as the while–loop. However in this case the
condition is evaluated after each iteration and not before. This means that
other as for the while–loop the body of the do–while–loop is guaranteed to be
executed at least once. The form of the do–while–loop is shown in Listing 59.

53

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

1 do {

2 list of statements

3 } while (condition);

Listing 59: The form of the do–while–loop.

Note that the do–while–loop can be simulated by a while–loop, by copying
the content of the body of the loop one time before the beginning of the loop.
In the example in Listing 60 the user is asked for a number between zero and
one. The loop continues until the user enters a number fulfilling this condition.

1 do {

2 n = getNumber("Enter a number between 0 and 1", 0.5);

3 } while (n<0 || n>1);

4 print("number:", n);

Listing 60: Using the do–while–loop to obtain valid input.

3.7 User–defined functions

In the ImageJ Macro Language you can define your own functions. A function is
a block of code that has a name and a number of arguments. When the function
is called, the arguments are replaced by the values in the call and the body of
the function is executed. A function can have a return value. If this is the case
the function call can be used on the right-side of an assignment statement or as
the parameter of another function call. Listing 61 shows the form of a function
definition.

1 function name(list of arguments) {

2 list of statements

3 }

Listing 61: The form of a function definition.

In Listing 47 we used a for–loop to calculate the factorial of a number n.
Remember that the factorial of the number n is the product of the numbers
from 1 to n. Imagine that the calculation of factorials is needed at different
places in your macro. You could of course copy the code from Listing 47 to each
place where the a factorial needs to be calculated. However this approach has
multiple problems:

• imagine you made an error in the code that calculates the factorial, you
will have to correct it for each copy

54

3.7. USER–DEFINED FUNCTIONS

• imagine you find a better way to calculate factorials that works faster, if
you want your macro to fully benefit, you have to change all copies again.

• at all the places where you want to calculate factorials you find the code
that describes how to calculate factorials. This will make your macro hard
to read and understand.

So it is much better to define and use a function that calculates factorials.
Listing 62 shows how this can be done.

1 print(factorial(5));

2 print(factorial(factorial(5)));

3 result = factorial(3);

4 print(result);

5

6 function factorial(n) {

7 result = 1;

8 for (i=n; i>1; i--) {

9 result *= i;

10 }

11 return(result);

12 }

Listing 62: A function that calculates the factorial of a number and its usage.

A function does not need to have a return value. Instead of returning a
calculated value, it can modify an inner state, for example an image or a results
table in ImageJ. The example in Listing ?? creates a circular region of interest
(roi) with a given radius around the center of the current image.

1 makeCircleAroundCenter(80);

2

3 function makeCircleAroundCenter(radius) {

4 makeOval((getWidth() - radius) / 2,

5 (getHeight() - radius) / 2, radius, radius);

6 Roi.setStrokeWidth(7);

7 }

Listing 63: A function that draws a circle around the center of the image.

The function makeCircleAroundCenter can not be used in an assignment
statements or as the parameter of another function since it does not have a
return value. However it still represents a useful abstraction and does some
useful work by creating a roi on the current image.

55

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

3.7.1 Variable scope and global variables

The scope of a variable is the part of the code in which the variable can be
accessed. It starts with the definition of the variable and goes to the end of
the block in which the variable is defined. It is visible in sub-blocks as in the
bodies of loops and if-statements, but not in the bodies of function declarations.
Function declarations have their own variable scope.

1 a = "outer";

2 show();

3 print(a);

4 function show() {

5 a = "inner";

6 print(a);

7 }

Listing 64: This macro prints ”inner” followed by ”outer”.

The macro in Listing 64 assigns the value ”outer” to the variable a in the
outer scope of the macro. It calls the function show. In the function show

another variable a is defined and the value ”inner” is assigned to it. However
the function has its own variable scope and the assignment in the function
does not affect the variable a in the outer scope. Therefore the function prints
”inner” and returns. Now the value of the variable a in the outer scope, ”outer”
is printed.

The situation is different when using global variables. Global variables are
declared on the outer level of a macro, using the keyword var. The scope of a
global variable is the whole program in which it is declared global, including all
function and macro bodies. Global variables allow the different functions and
macros in a file to communicate.

If we declare the variable a in Listing 64 global, the assignment in the
function–body will change the value of the global variable a and the macro
will output ”inner” twice.

1 var a = "outer";

2 show();

3 print(a);

4 function show() {

5 a = "inner";

6 print(a);

7 }

Listing 65: Now that a is a global variable, the output is two times ”inner”.

56

3.7. USER–DEFINED FUNCTIONS

Another problem can occur when the parameter of a function has the same
name as a global variable. In this case the parameter will not modify the value
of the global variable, however within the function that has this parameter the
global variable with the same name is not accessible any more. This is called
variable shadowing.

1 a = "outer";

2 show("inner");

3 print(a);

4 function show(a) {

5 print(a);

6 }

Listing 66: An example of variable shadowing.

Here are some rules that you should consider to avoid problems when working
with global variables:

• Avoid to use global variables when they are not really useful

• Declare global variables at the top of the file.

• Make sure that global variables are recognized as such by using a nam-
ing convention. Let global variables begin with an underscore, use only
upper–case letters and separate words with underscores. For example:
INPUT FOLDER. Never let other variables begin with an underscore. You

could of course use other prefixes to indicate global variables, but as soon
as letters are involved it will make the code less readable.

We will now demonstrate the use of global variables in a small example.
We will develop a turtle–graphics [7] macro. Imagine a turtle that sits at the
coordinates x, y on the image. It is headed into a direction given by the angle
α. You can give the following commands to the turtle:

forward n The turtle moves n units forward in the direction depending on the
current angle.

right a The turtle turns a degrees to the right.

left a The turtle turns a degrees to the left.

There are usually some more commands but we do not need them right now.
The turtle–graphics system is used to teach programming to children. We will
implement the three commands above as functions and the current coordinates
and the current angle will be global variables, so all functions can access them.
Besides these we will use two more global variables, the radius with which the
ROI, that represents the turtle is drawn and a delay, that allows to slow down the
movement of the turtle so that we can follow it. Besides of the three functions

57

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

that represent the three commands above, we will implement one more function
that initializes the turtle so that in the beginning it is in the middle of the
image.

1 var _CURRENT_X = 0;

2 var _CURRENT_Y = 0;

3 var _CURRENT_ANGLE = 0;

4 var _RADIUS = 20;

5 var _DELAY = 400;

6

7 function initializeTurtle() {

8 _CURRENT_X = getWidth() / 2;

9 _CURRENT_Y = getHeight() / 2;

10 moveTo(_CURRENT_X, _CURRENT_X);

11 makeOval(_CURRENT_X - (_RADIUS / 2),

12 _CURRENT_Y - (_RADIUS / 2),

13 _RADIUS, _RADIUS);

14 Roi.setFillColor("green");

15 }

Listing 67: Global variables that represent the location and orientation of the
turtle and the initialization.

The initialization modifies the global variables CURRENT X and CURRENT Y.
It sets them to the coordinates of the center of the image. It moves then the
current drawing position to this point. And draws the turtle as a ROI with the
radius given by the global variable RADIUS around the center of the image and
sets the fill–color of the turtle to green.

58

3.7. USER–DEFINED FUNCTIONS

1 function forward(step) {

2 _CURRENT_X += step * cos(_CURRENT_ANGLE * PI / 180);

3 _CURRENT_Y += step * sin(_CURRENT_ANGLE * PI / 180);

4 lineTo(_CURRENT_X, _CURRENT_Y);

5 Roi.move(_CURRENT_X - (_RADIUS / 2), _CURRENT_Y - (_RADIUS / 2));

6 wait(_DELAY);

7 }

8

9 function right(delta) {

10 _CURRENT_ANGLE += delta % 360;

11 }

12

13 function left(delta) {

14 _CURRENT_ANGLE -= delta % 360;

15 }

Listing 68: Implementation of the three turtle–graphics commands.

The right and left functions are very simple. They just increment or
decrement the current angle of the turtle by the given amount. They use modulo
360 since after 360 degrees the turtle has completely turned around one time.
The forward function calculates the new position depending on the length the
turtle shall advance and its present orientation. It draws a line from the current
drawing position to the new position of the turtle. Note that the draw function
updates the current drawing position, so that we do not have to do it ourselves.
Now the ROI representing the turtle is moved to the new position and the macro
pauses for the given delay in order to let us follow the movement.

Now let us create a new image and give some commands to the turtle.

1 run("Select All");

2 run("Clear");

3 initializeTurtle();

4 forward(100);

5 right(90);

6 forward(50);

7 left(90);

8 forward(100);

Listing 69: Implementation of the three turtle–graphics commands.

The Listing 69 should produce an image similar to Figure 3.4. We will come
back to the turtle–graphics later when we talk about recursion.

59

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

Figure 3.4: Example output of turtle–graphics.

3.7.2 Parameter passing by value and by reference

In the ImageJ Macro Language parameters that have a basic type, i.e. numbers
and strings are passed by value and arrays by reference. This means that when
you call factorial(n) with a variable n defined in the outer scope, the value of
this variable will not be modified. However when you pass a variable containing
an array into a function and the function modifies the elements of the array the
elements of the array in the outer variable are modified. This is why the output
of Listing 70 is ”5 25” and the output of Listing 71 is ”1, 4, 9” for a and for b.

1 a = 5;

2 b = squareValue(a);

3 print(a, b);

4 function squareValue(a) {

5 a = a * a;

6 return a;

7 }

Listing 70: The output is ”5 25”; The a in the outer context is not modified by
the commands in the function.

1 a = newArray(1,2,3);

2 b = squareList(a);

3 Array.print(a);

4 Array.print(b);

5

6 function squareList(a) {

7 for (i=0; i<a.length; i++)

8 a[i] = a[i] * a[i];

9 return a;

10 }

Listing 71: The output is two times ”1, 4, 9”; The a in the outer context is
modified by the commands in the function.

60

3.7. USER–DEFINED FUNCTIONS

3.7.3 Modelling with functions

How to know which functions you should write? This problem is part of mod-
elling. We will illustrate it with a small example. Imagine we want a macro that
asks the user for a folder and that displays a list of all image files in that folder.
The folder may contain other files, like text files, spreadsheet files, program files
and so on, however only the names of the image files will be displayed. How
should you implement the macro? Should you just write down the necessary
commands without any structure or should you use function and if yes which?

We will use something that is called top-down modelling. First we can
describe a solution of the problem in normal words without thinking about
which commands exist in the Macro Language. This could give an algorithm
like this:

• Ask the user to select a folder and get a list of all files in the folder.

• For each file in the list, test if the file is an image file. If the answer is yes,
add it to the solution.

• Display the solution.

If we had a function for step 2 then we could implement the solution as
shown in Listing 72.

1 dir = getDirectory("Select the input folder!");

2 files = getFileList(dir);

3 images = getImageFiles(files);

4 Array.show(images);

5

6 function getImageFiles(files) {

7 images = newArray(0);

8 return images;

9 }

Listing 72: First step in solving the problem, with a stub for the function
getImageFiles.

3.7.4 Recursion

61

CHAPTER 3. THE IMAGEJ MACRO LANGUAGE

62

Bibliography

[1] Wikimedia. File:IEEE 754 Double Floating Point Format.svg.

[2] ASA standard x3.4-1963. Technical report, June 1963.

[3] IEEE 754-2008. Technical report, August 2008.

[4] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, To-
bias Ktter, Thorsten Meinl, Peter Ohl, Kilian Thiel, and Bernd Wiswedel.
KNIME - the konstanz information miner: version 2.0 and beyond. ACM
SIGKDD Explorations Newsletter, 11(1):26, November 2009.

[5] Michael R. Lamprecht, David M. Sabatini, and Anne E. Carpenter. Cell-
Profiler: free, versatile software for automated biological image analysis.
BioTechniques, 42(1):71–75, January 2007.

[6] Jérôme Mutterer. Programming with the ImageJ macro language. In Im-
ageJ User and Developer Conference 2010, Luxembourg, 2010. Centre de
Recherche Public Henri Tudor.

[7] Seymour Papert. Mindstorms: children, computers, and powerful ideas.
Basic Books, New York, 2nd ed edition, 1993.

[8] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena
Kaynig, Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rue-
den, Stephan Saalfeld, Benjamin Schmid, Jean-Yves Tinevez, Daniel James
White, Volker Hartenstein, Kevin Eliceiri, Pavel Tomancak, and Albert
Cardona. Fiji: an open-source platform for biological-image analysis. Na-
ture Methods, 9(7):676–682, June 2012.

[9] Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. NIH image
to ImageJ: 25 years of image analysis. Nature methods, 9(7):671–675, July
2012. PMID: 22930834.

[10] Kenneth Slonneger. Formal syntax and semantics of programming lan-
guages: a laboratory based approach. Addison-Wesley Pub. Co, Reading,
Mass, 1995.

[11] Wikipedia. Double-precision floating-point format — wikipedia, the free
encyclopedia, 2014. [Online; accessed 28-July-2014].

63

BIBLIOGRAPHY

[12] Wikipedia. Ieee 754-1985 — wikipedia, the free encyclopedia, 2014. [Online;
accessed 28-July-2014].

64

	Introduction
	Getting Started
	Macros
	Installing Fiji
	Hello World
	Hello World using the log-window
	Hello World using a dialog
	Hello World on an image

	Excercises
	Answers

	The ImageJ Macro Language
	Comments
	Literals
	Expressions, Operators and Datatypes
	Numbers
	Strings
	Booleans
	Numbers as Bit-Strings
	Comparison Operations

	Variables and Assignments
	Automatic type conversion
	Arrays

	Conditional code execution
	Loops
	The for–loop
	The while–loop
	The do–while–loop

	User–defined functions
	Variable scope and global variables
	Parameter passing by value and by reference
	Modelling with functions
	Recursion

